Негосударственное общеобразовательное учреждение Средняя общеобразовательная школа

Доклад на тему компас история его открытия кратко: Подготовьте доклад на тему «Компас, история его открытия»

Компас история его открытия интересные факты. История компаса

История создания первого магнитного компаса уходит вглубь веков и по-прежнему во многих моментах остается загадкой. До нас в основном доходят лишь обрывки тех историй, с которыми можно было бы связать появление первого магнитного компаса. На звание страны, в которой появился первый компас, претендуют Греция, Китай и Индия, но и здесь все не так однозначно.

Предлагаю вместе рассмотреть дошедшие до нас благодаря скрупулезной работе историков сведения, на основании которых можно будет получить представление о том, где и когда появился один из первых навигационных приборов, который и по сей день пользуется большой популярностью и используется как моряками, так и любителями путешествий по суше.

Одна из «моделей» старинных компасов, вполне исправно работающая и сегодня.

Поскольку изобретение магнитного компаса тесно связано с открытием и изучением магнетизма, дальнейший наш рассказ будет параллельно рассматривать и это явление.

Первый китайский компас

По мнению некоторых исследователей, впервые явление магнетизма открыли древние греки. Однако есть и другая точка зрения, отдающая авторство открытия китайцам.

Ученые, отдающие предпочтение «китайскому открытию», ссылаются на летопись, сделанную в третьем тысячелетии до нашей эры, хотя предполагается, что сам магнитный железняк (он же — магнетит) был открыт китайцами на тысячелетие раньше.

В летописях, на которые ссылаются ученые, предполагается, что уже китайский император Хуан-ди во время своей битвы для навигации использовал компас. Однако по другой версии вместо компаса на его повозках использовалось устройство в виде колесницы, на которой миниатюрная фигурка человека показывал направление на юг.

Реконструкция такой колесницы показана на фото ниже:

Эта колесница устанавливалась на транспортное средство и соединялась с его колесами таким образом, что благодаря налаженному механизму шестеренок при повороте повозки колесница начинала вращаться в противоположном направлении.

Таким образом миниатюрная фигурка человека на колеснице всегда неизменно показывать на юг, независимо от поворота транспорта. Вообще, конечно, фигурка эта показывала бы и в любом другом направлении: все зависело от того, куда ее изначально направят. Сама же колесница не была в состоянии ориентироваться по сторонам света, как это делает стрелка магнитного компаса.

Интересно, что один из первых китайских компасов, представлявший собой ложку, изготовленную из магнитного материала и вращающуюся на гладкой доске, применялся не по прямому назначению, а в магический ритуалах для предсказаний. Такое использование магнита имело место в третьем тысячелетии до нашей эры, хотя по другой версии магнитные свойства ферромагнетика использовали в древнем Китае уже в четвертом тысячелетии до нашей эры в обрядах феншуя, объясняя магнетизм проявлением высших сил.

К концу же второго тысячелетия до нашей эры китайские моряки уже в полной мере пользовались магнитными компасами по прямому назначению — для ориентирования на морских просторах.

Первый компас в Индии

Независимо от Китая, магнетизм был открыт и в Индии. Открытие это произошло благодаря горе, расположенной возле реки Инд. Местные жители обратили внимание на то, что эта гора способна была притягивать к себе железо.

Магнитные свойства породы нашли применение в индийской медицине. Так, Сушрута — индийский врач — использовал магнит для хирургических манипуляций.

Как и в Китае, в Индии магнитом научились пользоваться моряки. Их компас выглядел, как самодельная рыба, голова которой была выполнена из материала, обладающего магнитными свойствами.

Таким образом, индийская рыбка и китайская ложка стали прародителями современного компаса.

Компас и Древняя Греция

Древняя Греция, как и предыдущие две страны, не отставала в научной сфере. Греки независимо от других ученых самостоятельно обнаружили и исследовали явление магнетизма, а после — создали свой первый компас.

В VII–VI веках до нашей эры древними греками, а именно Фалесом Милетским, было обнаружено, что известный на протяжении нескольких веков магнетит способен притягивать железо.

Объяснялось это явление по-разному: кто-то полагал, что магнетит имеет душу, которая тянется к железу, кто-то — что железо обладает влажностью, которую в свою очередь и поглощает магнит. Но, как понимаем, такие объяснения были еще очень далеки от истины.

Позже Сократ открыл явление намагничивания железа, притянутого к магниту. А еще некоторое время спустя было обнаружено, что магниты могут не только притягиваться, но и отталкиваться.

Именно благодаря открытию Сократа сегодня работают не только компасы, но и огромное количество других приборов.

Так постепенно раскрывались все грани магнетизма, которые в дальнейшем позволили раскрыть его природу. Но на этом этапе еще было рано говорить о чем-то, подобном компасу.

Дальнейшая история

В средние века ничего особо нового в плане обнаружения новых свойств магнетизма и работы с магнитами не открывалось. Появились лишь новые объяснения этому явлению, в основном связанные с теми же сверхъестественными силами. Так, например, монахи проявление магнетизма объясняли, опираясь на учение о теологии.

Если говорить о Европе, то здесь впервые упоминания о компасе встречаются в трудах Александра Неккама и датируются 1187 годом. Хотя, возможно, использование компаса здесь и на территории Средиземноморья началось значительно раньше — еще во втором тысячелетии до нашей эры, о чем свидетельствуют косвенные указания античных историков. Предполагается, что упоминания компаса не сохранились, поскольку у компаса попросту не было своего названия, чтобы вписать его в исторический документ.

Тремя столетиями позже во время своих плаваний известный моряк Христофор Колумб заметил, что во время морского путешествия магнитная стрелка отклоняется от направления север-юг. Так было открыто магнитное склонение, значения которого по-прежнему используются моряками и указываются на некоторых картах.

По предложению Ломоносова были созданы обсерватории для систематического изучения магнитного поля Земли и его изменений. Однако произошло это уже не при жизни великого русского ученого, но, как говорится, «лучше позже, чем никогда».

Позже Декартом и рядом других ученых была разработана подробная научная теория магнетизма, а также были открыты магнитные свойства и других материалов, не относящихся к ферромагнетикам — пара- и диамагнетиков.

Еще некоторое время спустя были найдены точки магнитных полюсов Земли, где магнитная стрелка имеет наклонение равное 90°, то есть располагается перпендикулярно горизонтальной плоскости.

На полюсах компас будет показывать только в случае, если его расположить вертикально.

Параллельно с изучением магнитов и особенностей проявления их магнитного поля в разных условиях происходило совершенствование конструкции магнитных компасов. Кроме того, были изобретены и другие типы компасов, работающие на принципах, не связанных с магнетизмом. О них мы рассказывали в

Современные модели магнитных компасов сильно отличаются от их предшественников. Они более компактны, легки, позволяют работать быстрее и дают более точные результаты при измерениях. Кроме того, такие модели зачастую снабжены вспомогательными элементами, расширяющими возможности прибора при работе с картой и на местности.

Не стоит забывать и о компасах, работа которых основана не на магнитных свойствах стрелки. На сегодняшний день таких компасов известно множество, что позволяет пользователю подобрать наиболее удобный для условий эксплуатации вариант.

Как видим, история на данный момент не может дать четкий и однозначный ответ на вопрос, где появился и кем был придуман самый первый компас в мире. Будем надеяться на то, что в скором времени историки смогут смахнуть скрывающую факты пелену древности и у них появится больше данных для того, чтобы выяснить страну первооткрывателей. А нам остается только ждать, учиться и пользоваться знаниями, которые пришли из прошлого и в полной мере используются человечеством на современном этапе развития.

Инструкция

Идея создания компаса принадлежит древним китайцам.

В III веке до н.э. один из китайских философов описывал компас того времени следующим образом. Это была разливательная ложка из магнетита, у которой был тонкий черенок и хорошо отполированная шарообразная выпуклая часть. Опиралась ложка своей выпуклой частью на такую же тщательно отполированную поверхность медной или деревянной пластины, при этом черенок пластины не касался, а свободно висел над ней. Таким образом, ложка могла вращаться вокруг своего выпуклого основания. На самой пластине были нарисованы стороны света в виде зодиакальных знаков. Если специально подтолкнуть черенок ложки, она начинала вращаться, при этом, останавливаясь, черенок всегда указывал точно на юг.

Все в том же Китае в XI веке придумали плавающую стрелку компаса. Делали ее из искусственного магнита, обычно в форме рыбки. Ее помещали в сосуд с водой, где она свободно плавала, а остановившись, также всегда указывала головой на юг. Другие формы компаса в том же веке были придуманы китайским ученым Шэнь Гуа. Он предлагал намагнитить обычную швейную иглу о природный магнит, а затем прикрепить эту иглу в центре корпуса к шелковой нити с помощью воска.

Так получалось меньшее при повороте иглы, чем в воде, а потому компас показывал более точное направление. Еще одна модель, предложенная ученым, предполагала крепление не к шелковой нити, а к шпильке, что больше напоминает современную форму компаса.

Почти на всех китайских кораблях в XI были установлены плавающие компасы. Именно в таком виде они распространились в мире. Сначала их в XII веке переняли арабы. Позже магнитная игла стала известна и в европейских странах: сначала — в Италии, затем — в Португалии, Испании, Франции, позднее — в Англии и Германии. Сначала намагниченная игла на кусочке дерева или пробки плавала в сосуде с водой, позже сосуд догадались закрыть стеклом, а еще позже магнитную стрелку догадались размещать на острие в центре бумажного круга. Затем компас был усовершенствован итальянцами, к нему была добавлена катушка, которая делилась на 16 (позже — 32) равных секторов, указывающих на стороны света (сначала по 4, а позже по 8 секторов для каждой из сторон).

Дальнейшее развитие науки и техники сделало возможным создание электромагнитного варианта компаса, который более совершенен в том плане, что не предусматривает отклонений из-за наличия ферромагнитных деталей в том транспортном средстве, на котором он используется. В 1908 году немецкий инженер Г. Аншютц-Кэмпфе создал прототип гирокомпаса, преимуществом которого стало указание направления не на магнитный северный полюс, а на истинный географический. Для навигации и управления крупными морскими судами почти повсеместно используется именно гирокомпас. Современная эра новых компьютерных технологий позволила придумать электронный компас, создание которого связано, прежде всего, с развитием системы спутниковой навигации.

Самое древнее устройство, облегчающее ориентирование на местности – это компас. Его стрелки указывают на магнитные полюса Земли. Каждый школьник знаком с этим нехитрым прибором. Удивительно, но он был изобретен задолго до нашей эры.

История компаса

Предположительно, история компаса начинается с III века до Рождества Христова. Древние китайцы первыми догадались об удивительном свойстве магнетита показывать полюса Земли.

Для передвижения по пустыне они изобрели прибор, мало похожий на современный компас, но принцип действия его был таким же. Древний компас напоминал ложку, лежащую на отполированной пластине. Черенок этой ложки из магнетита свободно вращался, и, останавливаясь, указывал на юг.

Намного позже, в XI веке нашей эры китайцы придумали компас с плавающей стрелкой в виде рыбы. Арабам очень понравился этот прибор, и они стали применять его для нахождения верного направления в далеких морских путешествиях.

В XIII в. похожим устройством стали пользоваться и европейцы. А в XIV в. компас приобрел вид, схожий с современным. Магнитную стрелку закрепляли шпилькой на дне сосуда или на бумажном основании.

Итальянец Флавио Джойо усовершенствовал прибор, снабдив его круглой картушкой с 16-ю ромбами (по 4 на каждую сторону света). Еще позже круг разделили на 32 части. К XVIII в. компас уже представлял собой сложное устройство, которое показывало не только направление движения, но и время.

А что сейчас

Сейчас существует множество разновидностей компаса:

  • электромагнитный,
  • электронный,
  • гирокомпас.

Они более совершенные и используются на кораблях и самолетах. Однако, старый добрый магнитный компас продолжает жить, являясь самым удобным и надежным прибором для геологов, альпинистов и простых любителей путешествий.

19.10.2015

В истории науки существует термин «4 великих изобретения». Речь идет об инновациях, которые были созданы в Китае и навсегда изменили понимание человеком окружающего мира. Наряду с бумагой, колесом и порохом, китайские ученые древности первыми подарили человечеству компас. Компас стал тем изобретением, без которого никогда бы не стали возможны географические открытия, не смогла бы существовать транснациональная торговля и многие другие процессы, создавшие нашу цивилизацию.

Первое письменное упоминание о компасе относится к 1044 году. В китайской книге описывается удивительное приспособление, с помощью которого путник мог ориентироваться в пустыне. Подробно компас был описан 40 годами позднее китайцем Шэнь Ко. Автор описывает конструкцию: кусок металла крепился к палке, которая была погружена в воду. Таким образом, достигался магнитный резонанс, та часть дерева, на которой крепилось железо, указывала направление в сторону севера.

Как компас попал в Европу доподлинно неизвестно. По всей видимости, изобретение принесли с собой арабы, которые к XII веку окончательно завоевывают территорию современной Испании. Оттуда компас попадает сперва к итальянцам, а затем и к англичанам. К слову, стоит отметить, что современное название прибора этимологически относится как раз к английскому compass, что означает «круг».

Существует и другая точка зрения, согласно которой компас в Европе был впервые изобретен викингами в X-XI веках, во времена походов на запад. Стремясь открыть для себя морские пути в неизведанные страны, северные войны использовали некое изобретение, которое позволяло определять направление сторон света, при помощи воды и солнца. Недаром, считается, что первыми берегов Америки достигли исландские воины. Сложно представить, чтобы они смогли пройти такой долгий путь, ориентируясь исключительно по звездам.

Первым из европейских ученых, усовершенствовавших конструкцию компаса, стал итальянец Флавио Джойя. Он предложил крепить стрелку на шпильку, что существенно сократило погрешность в указании направления, а также разделил окружность на 16 румбов (позже на 32). Таким образом, морская качка теперь практически не влияла на показания прибора, а капитаны кораблей смогли грамотно описывать и рассчитывать направление.

В XX веке с развитием инженерного дела, географии и геодезии создаются новые образцы прибора: электромагнитный компас, гирокомпас, буссоль и другие устройства. Так, в 1927 году был впервые опробован электрический компас. Необходимость такой разработки появилась в связи с развитием авиации. Первым летчиком, совершившим путешествие через Атлантический океан с таким компасом, стал американец Чарльз Линдберг.

С развитием науки пришло и понимание относительно некоторых тонкостей. Так, магнитный и реальный (географический) полюса земли не совпадают, что приводит к погрешности в расчетах. Это чревато, к примеру, отклонением от курса кораблей, совершающих плавание. Именно поэтому в конце XIX был разработан, так называемый, гирокомпас. Сегодня он используется практически на всех морских судах, отличается более сложной конструкцией и высокой точностью.

История создания компаса — это история человеческой наблюдательности. Если бы, однажды, один китайский мудрец не заметил бы связи между сторонами света, звездами и реакцией металла, возможно, человечество на долгие годы было бы вынуждено притормозить в своем развитии.

История компаса [ВИДЕО]

Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке «Файлы работы» в формате PDF

Если ты идёшь в поход, Переходишь речку вброд,

Влево и на косогор — Расширяешь кругозор

Ты возьми меня с собой Я верну тебя домой

Знаю север, знаю юг — Не заблудишься, мой друг.

(Самуил Маршак)

На уроке окружающего мира мы постигаем тайны нашего общего дома — замечательной планеты Земля. При изучении раздела «Как люди познают мир», тема «Приборы и инструменты» меня заинтересовал вопрос из учебника, «Какие ещё приборы ты знаешь?». И я вспомнила про компас.

Цель работы: Осознать важность открытия человеком компаса и его роли в развитии цивилизации

Задачи:

Изучить дополнительную литературу. Научиться ориентироваться в пространстве не имея компаса под рукой. Изготовить самодельный компас своими руками.

Объект исследования: компас

Гипотеза исследования:

Я предполагаю, что с помощью изготовленного из подручных средств компаса можно определить стороны горизонта в домашних условиях.

Методы исследования: поисковые, описательные, теоретические и практические.

Глава 1

    1. История создания компаса

Человек начал путешествовать очень давно. Большинство первых морских путешественников сбивалось с курса. Человек понял, что без специального прибора он обречен на долгие поиски верного пути. Так, был изобретен удивительное древнее изобретение компас для определения сторон горизонта.

Предположительно впервые он был создан в Древнем Китае ещё в III веке до нашей эры. Само слово «компас» произошло от древнебританского «compass», означавшего круг (см. рис.1 приложение № 1).

Китайцы знали, что магнит притягивает железо. Им было известно свойство магнита — указывать направление на север и на юг. Китайский компас представлял собой ложку с длинной ручкой, изготовленную из намагниченного железа. Ложку клали на гладкую деревянную подставку с делениями со знаками зодиака, раскручивали её, и она останавливалась. Выпуклая часть ложки легко вращалась по пластине. Черенок всегда указывал на юг. В таком виде китайский компас в ХII в. заимствовали арабы.

В ХIV в. Итальянец Флавио Джойя усовершенствовал этот прибор. Он надел магнитную стрелку на вертикальную шпильку. Это улучшило работу компаса. К стрелке была прикреплена картушка (лёгкий круг), разбитая на 16 румбов (см. рис.2 приложение № 2).

Спустя два столетия деление картушки составляло 32 румба. Уже к XVIII веку компас становится довольно сложным прибором, указывающим не только направление, но и время.

    1. Устройство компаса Андрианова

В нашей стране наиболее распространен компас системы Андрианова (см. рис.3 приложение № 3).

Он состоит из 5 частей: корпус компаса, визирное кольцо, магнитная стрелка, лимб (циферблат), зажим.

Правильно работающий компас всегда синей стрелкой смотрит на север, красная же, соответственно, показывает точно противоположно — на юг.

1.3 Принцип действия

Прежде чем использовать компас, его нужно проверить, положить его на горизонтальную поверхность и дождаться, пока стрелка замрёт, показывая, где север. Затем к прибору нужно поднести любой металлический предмет. Под воздействием магнита стрелка отклонится в его сторону. Убираем из поля действия металл и наблюдаем за нашей стрелкой.

Если наш компас исправный, то стрелочка непременно повернётся в исходное положение на север.

Глава 2: 2.1 Практическая часть. Ориентирование по местным природным признакам

Такие профессии, как геолог, летчик и моряк неразрывно связаны со знанием компаса.

Иногда в походе, лесу, важно знать точное направление пути, чтобы не заблудиться. Понять, где север, а где юг можно сориентироваться по местным признакам (см. рис.4,5,6,7,8 приложение № 4. ) Мхи и лишайники растут на стволах деревьев, пнях, камнях с северной стороны. У берез кора на южной стороне белее белая и чистая, чем с северной. Крона деревьев пышнее с южной стороны. Муравьи устраивают жилища на юг от дерева. Снег тает весной на склонах гор, обращенных к югу.

Но не все признаки бывают надежными, поэтому, чтобы правильно сориентироваться, надо при солнечной погоде в полдень стать спиной к солнцу так, чтобы тень была точно впереди человека. Тогда впереди у него будет — север, за спиной — юг, справа — восток, слева — запад (см. рис.9 приложение № 5).

2.2 Изготовление самодельного компаса

Существует множество способов изготовления простейшего компаса из подручных средств, в домашних и походных условиях. Рассмотрим подробно.

Для изготовления компаса понадобится иголка, бумага, ножницы, две бусины красного и синего цветов, и емкость с водой (см. рис.10,11,12,13 приложение № 6.) Игла будет выполнять функцию магнитной стрелки — указателя сторон света. Основанием для стрелки будет служить легкий плавучий материал, как, например, бумага.

В емкость среднего размера налейте воду. Иголку необходимо приложить к ножницам и интенсивно тереть в одном направлении. Так происходит процесс намагничивания (см. рис.14 приложение № 7) .

Из бумаги вырезать круг и проколоть нашей иголкой (см. рис.15 приложение № 7) . Нанизать на иглу бусины (см. рис.16 приложение № 7).

Поместите самодельный компас в емкость с водой (см. рис.17 приложение № 7) . Правильно сделанный компас должен какое-то время двигаться. Если он неподвижно стоит, кусочек металла необходимо намагнитить еще раз. Если вы все сделали правильно, поставленный на воду компас будет медленно вращаться. Когда импровизированная магнитная стрелка перестанет перемещаться, ее намагниченная сторона укажет на стороны света (юг — игла на конце закрепленной красной бусинкой, на север — соответственно синей) (см. рис.18 приложение № 7).

В походных условиях для изготовления компаса понадобится любой кусок металла: иголка, булавка, скрепка, металлическая проволока, все, что найдется под рукой. Основанием для стрелки будет служить легкий плавучий материал, как, например, губка, пробка, пенопласт, лист дерева.

Чтобы кусок металла начал выполнять функции указателя сторон света, его необходимо заострить и намагнитить о ткань, мех, железо. В крайнем случае, для намагничивания можно воспользоваться собственными волосами. Кусок металла необходимо приложить к выбранному предмету и интенсивно тереть в одном направлении и опустить металл в лужу. Намагниченный конец металла укажет на север.

ЗАКЛЮЧЕНИЕ

В ходе проведения своей исследовательской работы, я подтвердила свою гипотезу, что с помощью изготовленного из подручных средств компаса можно определить стороны горизонта в домашних условиях, узнала историю создания и устройства компаса. Научилась пользоваться этим сложным для меня прибором.

Считаю, что полученные знания позволят мне и ребятам с полной уверенностью определить стороны света в любом месте, независимо от погодных условий и времени суток.

В будущем, я планирую посещать школьный туристический спортивный кружок «Максимум», руководителем которого является учитель географии, член Российского географического общества Республики Башкортостан Юсупов Ильнур Гайнисламович. Благодаря ему, в нашей школе создается ассоциированная школа Российского географического общества.

Спасибо за внимание!

СПИСОК ЛИТЕРАТУРЫ

    https://otvet.mail.ru/question/5173277

    https://otvet. mail.ru/question/58499957

    Дегтерев, Н. Д. Стрелочные магнитные компасы [Текст] / Н.Д. Дегтерев. — Ленинград, 1984

    Зарапин, В.Г. Научные опыты на даче [Текст] / В.Г. Зарапин, Пьянникова О.О., Яковлева М.А. — Москва, 2014

    Кожухов, В.П. и др. Магнитные компасы [Текст] / В.П. Кожухов. — Москва, 1981

    Феоктистова, В.Ф., Исследовательская и проектная деятельность младших школьников. Рекомендации для учителя [Текст] / В.Ф. Феоктистова. — Волгоград: Издательство «Учитель», 2010

ПРИЛОЖЕНИЕ № 1. Древнее изобретение китайцев.

Рис. 1 Впервые он был создан в Древнем Китае в III веке до нашей эры

ПРИЛОЖЕНИЕ № 2. Прибор итальянца Флавио Джойя

Рис. 2 В ХIV в. Итальянец Флавио Джойя усовершенствовал этот прибор. Он надел магнитную стрелку на вертикальную шпильку. К стрелке прикрепил картушку (лёгкий круг), разбитую на 16 румбов.

ПРИЛОЖЕНИЕ № 3. Компас Андрианова

Рис. 3 Устройство компаса Андрианова

ПРИЛОЖЕНИЕ № 4. Ориентирование по местным признакам

Мхи и лишайники растут на стволах деревьев, пнях, камнях с северной стороны

У берез кора на южной стороне белее белая и чистая, чем с северной.

Крона деревьев пышнее с южной стороны.

Муравьи устраивают жилища на юг от дерева.

Снег тает весной на склонах гор, обращенных к югу.

ПРИЛОЖЕНИЕ № 5. Ориентирование при солнечной погоде

Рис. 9 В солнечную погоду в полдень нужно стать спиной к солнцу так, чтобы тень была точно впереди человека. Тогда впереди у него будет — север, за спиной — юг, справа — восток, слева — запад.

ПРИЛОЖЕНИЕ № 6. Для изготовления компаса необходимо

Рис. 10 Емкость с водой

Рис. 11 Ножницы

Рис. 12 Игла, две бусины красного и синего цветов

Рис.13 Бумага

ПРИЛОЖЕНИЕ № 7. Изготовление компаса в домашних условиях

Рис 14 Иголку интенсивно трем в одном направлении. Так происходит процесс

намагничивания.

Рис. 15 Из бумаги вырезаем круг и прокалываем нашей иголкой

Рис. 16 Нанизываем на иглу бусины

Рис. 17 Опускаем самодельный компас в емкость с водой.

Рис.18 Намагниченная сторона иглы всегда останавливается, точно указывая на север

Сообщение о компасе — Kratkoe.com

Научные доклады

Автор J.G. На чтение 3 мин Обновлено

«Компас» доклад для детей кратко расскажет Вам историю открытия этого предмета. Также доклад о компасе можно использовать во время подготовки к занятию.

Содержание

  1. Сообщение о компасе
  2. Где и когда появился первый компас?     
  3.   Из чего состоит компас?
  4. Компас: интересные факты

Сообщение о компасе

Компас представляет собой прибор для поиска сторон горизонта при помощи магнитной стрелки, которая указывает направление на юг и север. Его изобрели много столетий назад, и он сразу же стал использоваться путешественниками. Компас был первым навигационным прибором, позволивший морякам выходить в открыто море.

Где и когда появился первый компас?     

В III веке до н. э. в Китае изобрели прибор, который указывал на стороны света. Внешне он напоминал ложку с тонким черенком и выпуклой шарообразной частью. Изготавливалась она из магнетита. Отполированную выпуклую часть ложки ставили на деревянную или медную пластину, также отполированную. Черенок свободно висел над пластиной, а вот ложка вращалась вокруг оси выпуклого основания. На пластине были обозначены страны света. Стрелка компаса, находящаяся в покое, всегда показывала точно на юг. Этот древний компас назывался сынань, то есть «ведающий югом». 

В ХI веке китайцы изобрели плавающую стрелку компаса из искусственного магнита.  Железный компас тогда имел форму рыбки. Вначале его нагревали до красноты, а потом опускали в сосуд с водой. «Рыбка» начинала плавать, и ее голова указывала в южную сторону. Шэнь Гуа, ученый из того же Китая, предложил парочку разновидностей компаса: с намагниченной иглой и шелковой нитью, с намагниченной иголкой и шпилькой. В ХII веке компас с магнитной иглой использовался арабами, а спустя столетие итальянцами, французами, испанцами и португальцами. 

В XIV веке магнитную стрелку стали размещать на острие в середине круга из бумаги – картушки. Следующий, кто усовершенствовал компас, был итальянец Флавио Джулио. Он разделил бумажный круг на 16 частей. В XVII веке его усовершенствовали вращающейся линейкой с визирами, которая позволяла более точно рассчитать направление.

 Из чего состоит компас?

   Устройство прибора зависит от вида компаса. Выделяют следующие его разновидности: гирокомпас, магнитный компас, электронный компас. Основной частью обычного магнитного компаса является компас со шпилем в центре. На конце шпиля находится магнитная стрелка, а сам корпус сверху прикрыт стеклом.

Компас: интересные факты
  • До изобретения и распространения компаса, моряка на своих кораблях не выходили в открытое море, чтобы не заблудиться. 
  • В Европу компас привезли венецианские купцы.
  • До китайцев что-то наподобие  компаса использовали индейцы. В Сан-Лоренцо Теночтилан ученые нашли изделие из гематита, датируемый  1000 годом до н.э. Но магнитный железняк все же открыли китайцы. 
  • Можно самому сделать компас из блюдца с водой и намагниченной иглы. 

Надеемся, что доклад про компас помог узнать много полезной информации о нем. А краткий рассказ о компасе Вы можете оставить через форму комментариев ниже.

Магнитный компас | Описание, история и факты

магнитный компас

Смотреть все медиа

Похожие темы:
вихревая ошибка ошибка поворота на север линия луббера карта компаса нактоуз

См. все связанные материалы →

магнитный компас , в навигации или геодезии, инструмент для определения направления на поверхности Земли с помощью магнитного указателя, который выравнивается с магнитным полем Земли. Магнитный компас является старейшим и наиболее известным типом компаса и используется в различных формах на самолетах, кораблях и наземных транспортных средствах, а также геодезистами.

Где-то в XII веке мореплаватели в Китае и Европе сделали открытие, по-видимому, независимо, что кусок магнетита, естественной магнитной руды, когда его плавают на палке в воде, имеет тенденцию ориентироваться так, чтобы указывать на направление Полярной звезды. За этим открытием, по-видимому, вскоре последовало второе: железная или стальная игла, к которой прикасается магнит в течение достаточно долгого времени, также стремится выровняться в направлении север-юг. Зная, какой путь ведет на север, конечно, можно найти и любое другое направление.

Еще из Britannica

Навигация: магнитный компас

Причина, по которой магнитные компасы работают именно так, заключается в том, что Земля сама по себе действует как огромный стержневой магнит с полем север-юг, которое заставляет свободно движущиеся магниты принимать одну и ту же ориентацию. Направление магнитного поля Земли не совсем параллельно оси север-юг земного шара, но достаточно близко, чтобы неисправленный компас был достаточно хорошим ориентиром. Неточность, известная как вариация (или склонение), варьируется по величине от точки к точке на Земле. Отклонение стрелки компаса из-за местных магнитных воздействий называется девиацией.

За столетия в магнитный компас был внесен ряд технических усовершенствований. Многие из них были первооткрывателями англичан, чья большая империя удерживалась вместе благодаря военно-морской мощи и, следовательно, в значительной степени полагалась на навигационные устройства. К 13 веку стрелка компаса была насажена на штифт, стоящий на дне чаши компаса. Сначала на чаше были отмечены только север и юг, но затем были заполнены остальные 30 основных точек направления. Карточка с нарисованными на ней точками была установлена ​​прямо под стрелкой, что позволяло штурманам читать свое направление с вершины чаши. карта. Впоследствии сама чаша была подвешена на шарнирах (кольца по бокам, которые позволяли ей свободно качаться), гарантируя, что карта всегда будет ровной. В 17 веке сама игла приобрела форму параллелограмма, которую было легче монтировать, чем тонкую иглу.

В 15 веке мореплаватели начали понимать, что стрелки компаса указывают не прямо на Северный полюс , а на какую-то ближайшую точку; в Европе стрелки компаса указывали немного восточнее истинного севера. Чтобы преодолеть эту трудность, британские мореплаватели использовали обычные меридиональные компасы, в которых север на карте компаса и «стрелка на север» совпадали, когда судно проходило пункт в Корнуолле, Англия. (Однако магнитные полюса смещаются предсказуемым образом — в более поздние века европейцы обнаружили, что магнитный север находится к западу от истинного севера, — и это необходимо учитывать при навигации.)

В 1745 году английский изобретатель Гоуин Найт разработал метод намагничивания стали таким образом, чтобы она сохраняла свою намагниченность в течение длительных периодов времени; его улучшенная стрелка компаса имела форму стержня и была достаточно большой, чтобы иметь колпачок, с помощью которого ее можно было установить на ось. Широко использовался компас рыцаря.

Оформите подписку Britannica Premium и получите доступ к эксклюзивному контенту.

Подписаться сейчас

Некоторые ранние компасы не имели воды в чаше и были известны как компасы с сухой карточкой; их показания легко нарушались ударами и вибрацией. Хотя они менее подвержены ударам, заполненные жидкостью компасы страдали от утечек, и их было трудно ремонтировать, когда стержень изнашивался. Ни жидкий, ни сухой тип карты не имели решающего преимущества до 1862 года, когда был изготовлен первый жидкий компас с поплавком на карте, который снял большую часть веса с оси. Была изобретена система сильфонов для расширения и сжатия жидкости, что предотвращает большинство утечек. Благодаря этим усовершенствованиям жидкостные компасы сделали компасы с сухими картами устаревшими к концу 19 века.век.

Современные морские компасы обычно устанавливаются в нактоузы, цилиндрические пьедесталы с возможностью подсветки лицевой стороны компаса снизу. Каждый нактоуз содержит специально расположенные магниты и куски стали, которые нейтрализуют магнитное воздействие металла корабля. Во многом такое же устройство используется на борту самолетов, за исключением того, что оно содержит механизм коррекции ошибок, возникающих в магнитных компасах, когда самолеты внезапно меняют курс. Корректирующим механизмом является гироскоп, обладающий свойством сопротивляться попыткам изменить свою ось вращения. Эта система называется гиромагнитным компасом.

Редакторы Британской энциклопедии Эта статья была недавно отредактирована и обновлена ​​Пэтом Бауэром.

Как был открыт бозон Хиггса | Наука

Детектор ATLAS, один из двух экспериментов по обнаружению неуловимого бозона Хиггса в столкновениях частиц на Большом адронном коллайдере в ЦЕРНе, весит целых сто 747 струй и содержит более 1800 миль кабеля. Клаудия Марчеллони / ЦЕРН

Примечание редактора: 8 октября 2013 года Питер Хиггс и Франсуа Энглер получили Нобелевскую премию по физике за работу над бозоном Хиггса. Ниже наш научный обозреватель Брайан Грин объясняет науку, стоящую за открытием.

Известная история в анналах физики повествует о 5-летнем Альберте Эйнштейне, лежавшем в постели, получившем от отца игрушечный компас. Мальчик был одновременно озадачен и загипнотизирован работой невидимых сил, перенаправляющих стрелку компаса на север всякий раз, когда ее исходное положение нарушалось. Этот опыт, как позже скажет Эйнштейн, убедил его в том, что в природе существует глубокий скрытый порядок, и побудил его посвятить свою жизнь попыткам раскрыть его.

Хотя этой истории уже более века, загадка, с которой столкнулся молодой Эйнштейн, перекликается с ключевой темой современной физики, важной для самого важного экспериментального достижения в области науки за последние 50 лет: открытия, сделанного год назад. в июле этого года бозона Хиггса.

Поясню.

Наука в целом и физика в частности ищут закономерности. Растяните пружину в два раза и почувствуйте в два раза большее сопротивление. Шаблон. Увеличьте объем, который занимает объект, сохраняя при этом его массу фиксированной, и чем выше он будет плавать в воде. Шаблон. Внимательно наблюдая закономерности, исследователи открывают физические законы, которые можно выразить на языке математических уравнений.

В случае с компасом также очевидна четкая закономерность: переместите его, и стрелка снова укажет на север. Я могу представить себе молодого Эйнштейна, который думает, что должен существовать общий закон, согласно которому подвешенные металлические иглы толкаются на север. Но такого закона не существует. Когда в области есть магнитное поле, на определенные металлические объекты действует сила, которая выравнивает их вдоль направления поля, каким бы оно ни было. И магнитное поле Земли указывает на север.

Пример простой, но урок глубокий. Образцы природы иногда отражают две взаимосвязанные черты: фундаментальные физические законы и влияние окружающей среды. Это природная версия природы против воспитания. В случае с компасом распутать их не сложно. Манипулируя им с помощью магнита, вы легко приходите к выводу, что ориентация магнита определяет направление стрелки. Но могут быть и другие ситуации, когда влияние окружающей среды настолько распространено и находится за пределами нашей способности манипулировать, что было бы гораздо сложнее распознать их влияние.

Физики рассказывают притчу о рыбах, исследующих законы физики, но настолько привыкших к своему водному миру, что не учитывают его влияние. Рыбы изо всех сил пытаются объяснить легкое покачивание растений, а также их собственное передвижение. Законы, которые они в конечном итоге находят, сложны и громоздки. Затем у одной блестящей рыбы есть прорыв. Возможно, сложность отражает простые фундаментальные законы, действующие в сложной среде, наполненной вязкой, несжимаемой и всепроникающей жидкостью: океаном. Поначалу проницательную рыбку игнорируют, даже высмеивают. Но постепенно другие тоже понимают, что их окружение, несмотря на его привычность, оказывает значительное влияние на все, что они наблюдают.

Притча ближе к сути, чем мы могли бы подумать? Могут ли быть другие, тонкие, но всепроникающие особенности окружающей среды, которые мы до сих пор не смогли должным образом отразить в своем понимании? Открытие частицы Хиггса на Большом адронном коллайдере в Женеве убедило физиков в однозначном положительном ответе.

Почти полвека назад Питер Хиггс и несколько других физиков пытались понять происхождение основной физической характеристики: массы. Вы можете думать о массе как о весе объекта или, немного точнее, как о сопротивлении, которое он оказывает изменению его движения. Толкните товарный поезд (или перо), чтобы увеличить его скорость, и сопротивление, которое вы почувствуете, отразится на его массе. На микроскопическом уровне масса грузового поезда создается составляющими его молекулами и атомами, которые сами состоят из элементарных частиц, электронов и кварков. Но откуда берутся массы этих и других элементарных частиц?

Когда физики в 1960-х моделировали поведение этих частиц, используя уравнения, основанные на квантовой физике, они столкнулись с загадкой. Если бы они представили, что все частицы не имеют массы, то каждое слагаемое в уравнениях образует идеально симметричную структуру, подобную вершинам идеальной снежинки. И эта симметрия была не просто математически элегантной. Это объясняло закономерности, очевидные в экспериментальных данных. Но — и вот в чем загадка — физики знали, что частицы имеют массу, и когда они модифицировали уравнения, чтобы учесть этот факт, математическая гармония была нарушена. Уравнения стали сложными и громоздкими и, что еще хуже, непоследовательными.

Что делать? Вот идея, выдвинутая Хиггсом. Не пихайте массы частиц в глотку красивых уравнений. Вместо этого сохраняйте уравнения чистыми и симметричными, но считайте, что они работают в особой среде. Представьте себе, что все пространство равномерно заполнено невидимой субстанцией — теперь называемой полем Хиггса, — которая притягивает частицы, когда они ускоряются в ней. Надавите на фундаментальную частицу, чтобы увеличить ее скорость, и, согласно Хиггсу, вы почувствуете эту силу сопротивления как сопротивление. С полным основанием вы бы интерпретировали сопротивление как массу частицы. Для умственной опоры представьте мячик для пинг-понга, погруженный в воду. Когда вы толкаете мячик для пинг-понга, он кажется намного массивнее, чем вне воды. Его взаимодействие с водной средой приводит к тому, что он наделяется массой. Так и с частицами, погруженными в поле Хиггса.

В 1964 году Хиггс представил статью в известный физический журнал, в которой математически сформулировал эту идею. Бумага была отклонена. Не потому, что в нем была техническая ошибка, а потому, что предположение о невидимом чем-то, пронизывающем пространство, взаимодействующем с частицами и обеспечивающем их массу, ну, все это выглядело как куча раздутых домыслов. Редакция журнала сочла его «не имеющим очевидного отношения к физике».

Но Хиггс проявил настойчивость (и его исправленная статья была опубликована позже в том же году в другом журнале), и физики, которые потратили время на изучение предложения, постепенно поняли, что его идея была гениальным ходом, который позволил им получить свой пирог и съесть это тоже. В схеме Хиггса фундаментальные уравнения могут сохранять свою первоначальную форму, потому что грязная работа по определению масс частиц возлагается на окружающую среду.

Хотя меня не было рядом, чтобы стать свидетелем первоначального отклонения предложения Хиггса в 1964 году (ну, я был рядом, но очень редко), я могу засвидетельствовать, что к середине 1980-х оценка изменилась. Физическое сообщество по большей части полностью разделяло идею существования поля Хиггса, проникающего в пространство. На самом деле, в аспирантуре я изучал то, что известно как Стандартная модель физики элементарных частиц (квантовые уравнения, которые физики собрали для описания частиц материи и доминирующих сил, с помощью которых они влияют друг на друга), профессор представил теорию Хиггса. поле с такой уверенностью, что я долгое время не подозревал, что оно еще должно быть установлено экспериментально. Иногда такое случается в физике. Математические уравнения иногда могут рассказать такую ​​убедительную историю, они могут, казалось бы, так сильно излучать реальность, что закрепляются в просторечии работающих физиков еще до того, как появятся данные, подтверждающие их.

Но только с помощью данных можно установить связь с реальностью. Как мы можем проверить поле Хиггса? Вот тут-то и появляется Большой адронный коллайдер (БАК). Проходя сотни ярдов под Женевой, Швейцария, пересекая французскую границу и обратно, БАК представляет собой круглый туннель длиной почти 17 миль, который служит гоночной трассой для столкновение частиц материи. БАК окружен примерно 9000 сверхпроводящих магнитов и является домом для полчищ протонов, вращающихся вокруг туннеля в обоих направлениях, которые магниты разгоняют почти до скорости света. На таких скоростях протоны проносятся по туннелю примерно 11 000 раз в секунду и, направляемые магнитами, в мгновение ока совершают миллионы столкновений. Столкновения, в свою очередь, производят брызги частиц, похожие на фейерверки, которые улавливают и регистрируют гигантские детекторы.

Одним из основных мотивов создания БАК, стоимость которого составляет порядка 10 миллиардов долларов и в котором участвуют тысячи ученых из десятков стран, был поиск доказательств существования поля Хиггса. Математика показала, что если идея верна, если мы действительно погружаемся в океан поля Хиггса, то сильные столкновения частиц должны колебать поле подобно тому, как две сталкивающиеся подводные лодки колеблют воду вокруг себя. И время от времени покачивание должно быть как раз таким, чтобы смахнуть крупинку поля — крошечную капельку океана Хиггса, — которая появится как долгожданная частица Хиггса.

Расчеты также показали, что частица Хиггса будет нестабильной, распадаясь на другие частицы за мизерную долю секунды. В водовороте сталкивающихся частиц и вздымающихся облаков твердых частиц ученые, вооруженные мощными компьютерами, будут искать отпечаток Хиггса — образец продуктов распада, определяемый уравнениями.

Ранним утром 4 июля 2012 года я собрался вместе с примерно 20 другими приверженцами в конференц-зале Физического центра Аспена, чтобы посмотреть прямую трансляцию пресс-конференции на объектах Большого адронного коллайдера в Женеве. Примерно за шесть месяцев до этого две независимые группы исследователей, которым было поручено собрать и проанализировать данные БАК, объявили о серьезных доказательствах того, что частица Хиггса была обнаружена. В настоящее время в сообществе физиков ходит слух, что у команд наконец-то появилось достаточно доказательств, чтобы сделать окончательные заявления. В сочетании с тем фактом, что самого Питера Хиггса попросили совершить поездку в Женеву, было достаточно мотивации не ложиться спать после 3 часов ночи, чтобы услышать объявление в прямом эфире.

Мир быстро понял, что доказательство того, что частица Хиггса была обнаружена, было достаточно убедительным, чтобы перешагнуть порог открытия. Теперь, когда частица Хиггса была официально обнаружена, аудитория в Женеве разразилась бурными аплодисментами, как и наша небольшая группа в Аспене, и, несомненно, десятки подобных собраний по всему миру. Питер Хиггс вытер слезу.

С годами ретроспективного взгляда и дополнительными данными, которые только укрепили аргументы в пользу теории бозона Хиггса, я бы резюмировал наиболее важные последствия этого открытия.

Во-первых, мы давно знаем, что в космосе есть невидимые обитатели. Радио и телевизионные волны. Магнитное поле Земли. Гравитационные поля. Но ни один из них не является постоянным. Никто не неизменен. Ни одно из них не присутствует равномерно во всей Вселенной. В этом отношении поле Хиггса принципиально отличается. Мы полагаем, что его значение одинаково на Земле и вблизи Сатурна, в туманностях Ориона, по всей Галактике Андромеды и везде. Насколько мы можем судить, поле Хиггса неизгладимо отпечатывается на пространственной ткани.

Во-вторых, частица Хиггса представляет собой новую форму материи, появление которой ожидалось многими десятилетиями, но никогда не наблюдалось. В начале 20-го века физики поняли, что у частиц, помимо их массы и электрического заряда, есть третья определяющая характеристика: их вращение. Но, в отличие от детской волчки, вращение частицы — неизменная внутренняя характеристика; он не ускоряется и не замедляется со временем. Электроны и кварки имеют одинаковое значение спина, в то время как спин фотонов — частиц света — в два раза больше, чем у электронов и кварков. Уравнения, описывающие частицу Хиггса, показали, что, в отличие от любых других видов фундаментальных частиц, у нее вообще не должно быть спина. Данные с Большого адронного коллайдера подтвердили это.

Установление существования новой формы материи — редкое достижение, но результат имеет резонанс в другой области: космологии, научном исследовании того, как вся Вселенная возникла и развилась в форму, которую мы сейчас наблюдаем. В течение многих лет космологи, изучающие теорию Большого Взрыва, зашли в тупик. Они собрали надежное описание того, как Вселенная развивалась за доли секунды после начала, но они не смогли дать никакого представления о том, что вообще заставило пространство начать расширяться. Какая сила могла оказать такое мощное внешнее воздействие? При всем своем успехе теория Большого взрыва не учитывала взрыв.

В 1980-х годах было найдено возможное решение, которое звонит в колокол Хиггса. Если область пространства равномерно заполнена полем, частицы которого не имеют спина, то эйнштейновская теория гравитации (общая теория относительности) показывает, что может возникнуть мощная сила отталкивания — взрыв, и притом большой. Расчеты показали, что реализовать эту идею с самим полем Хиггса трудно; двойная обязанность обеспечения массы частиц и подпитки взрыва оказывается существенным бременем. Но проницательные ученые поняли, что постулируя второе «подобное Хиггсу» поле (обладающее тем же исчезающим спином, но другой массой и взаимодействиями), они могли бы разделить бремя — одно поле для массы, а другое — для отталкивающего толчка — и предложить убедительное объяснение взрыва. Из-за этого уже более 30 лет физики-теоретики энергично исследуют космологические теории, в которых такие хиггсовские поля играют существенную роль. Были написаны тысячи журнальных статей, развивающих эти идеи, и миллиарды долларов были потрачены на наблюдения в дальнем космосе в поисках и обнаружении косвенных доказательств того, что эти теории точно описывают нашу Вселенную. Таким образом, подтверждение БАК того, что по крайней мере одно такое поле действительно существует, ставит поколение космологических теорий на гораздо более прочную основу.

Наконец, и, возможно, это самое важное, открытие частицы Хиггса — это поразительный триумф математики, способной раскрыть устройство Вселенной. Это история, которая повторялась в физике множество раз, но каждый новый пример все равно волнует. Возможность существования черных дыр возникла в результате математических анализов немецкого физика Карла Шварцшильда; последующие наблюдения доказали, что черные дыры существуют. Космология Большого Взрыва возникла в результате математических анализов Александра Фридмана, а также Жоржа Леметра; последующие наблюдения также подтвердили правильность этого понимания. Концепция антиматерии впервые возникла в результате математического анализа квантового физика Поля Дирака; последующие опыты показали, что и эта идея верна. Эти примеры дают представление о том, что имел в виду великий физик-математик Юджин Вигнер, когда говорил о «необоснованной эффективности математики в описании физической вселенной». Поле Хиггса возникло в результате математических исследований, направленных на поиск механизма, наделяющего частицы массой. И снова математика прошла с честью.

Я сам физик-теоретик, один из многих, посвятивших себя поиску того, что Эйнштейн назвал «единой теорией» — глубоко скрытых связей между всеми силами природы и материей, о которых мечтал Эйнштейн, спустя много времени после того, как увлекся физикой благодаря таинственным работам компас — открытие бозона Хиггса особенно приятно. Наша работа основана на математике и до сих пор не имела контакта с экспериментальными данными. Мы с нетерпением ждем 2015 года, когда модернизированный и еще более мощный БАК снова будет включен, так как есть шанс, что новые данные докажут, что наши теории движутся в правильном направлении. Основные вехи будут включать в себя открытие класса ранее невидимых частиц (называемых «суперсимметричными» частицами), которые предсказывают наши уравнения, или намеки на дикую возможность пространственных измерений за пределами трех, которые мы все ощущаем. Еще более захватывающим было бы открытие чего-то совершенно непредвиденного, отправляющего нас всех обратно к школьным доскам.

Многие из нас пытаются взобраться на эти математические горы уже 30 лет, а некоторые даже дольше. Временами нам казалось, что единая теория просто недоступна для понимания, а в других случаях мы действительно блуждаем в темноте. Для нашего поколения очень важно стать свидетелями подтверждения бозона Хиггса, увидеть математические открытия четырехдесятилетней давности, реализованные в виде хлопков и потрескиваний в детекторах БАК. Это напоминает нам о том, что нужно принять близко к сердцу слова нобелевского лауреата Стивена Вайнберга: «Наша ошибка не в том, что мы слишком серьезно относимся к нашим теориям, а в том, что мы относимся к ним недостаточно серьезно. Всегда трудно понять, что эти числа и уравнения, с которыми мы играем за рабочим столом, имеют какое-то отношение к реальному миру». Иногда эти числа и уравнения обладают сверхъестественной, почти жуткой способностью освещать темные уголки реальности. Когда они это сделают, мы станем намного ближе к пониманию своего места в космосе.

Детектор ATLAS, один из двух экспериментов по обнаружению неуловимого бозона Хиггса в столкновениях частиц на Большом адронном коллайдере в ЦЕРНе, весит целых сто 747 струй и содержит более 1800 миль кабеля. Клаудия Марчеллони / ЦЕРН Компактный мюонный соленоид на Большом адронном коллайдере улавливает частицы в действии. Майкл Хох / ЦЕРН Вернемся к чертежной доске: физик Питер Хиггс нацарапал свое знаменитое уравнение, описывающее источник массы частицы. Потребуется полвека, чтобы доказать это. Стюарт Уоллес / Splash News / Newscom Команда работает с детектором ATLAS, одним из двух экспериментов по обнаружению неуловимого бозона Хиггса в столкновениях частиц. Клаудия Марчеллони / ЦЕРН До установки части детектора CMS находились в уборной ЦЕРНа. Максимилиан Брайс, Майкл Хох, Джозеф Гобин / ЦЕРН Магнит в детекторе CMS создает магнитное поле в 100 000 раз сильнее, чем у Земли. Гобин / ЦЕРН Крупный план детектора CMS — одного из двух экспериментов по обнаружению сигнатур бозона Хиггса. Гобин / ЦЕРН Хотя бозон Хиггса кажется слишком коротким, чтобы его можно было обнаружить напрямую, физики из CMS могут сделать вывод о его существовании, изучая потоки частиц, оставшихся после протон-протонных столкновений.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *