Негосударственное общеобразовательное учреждение Средняя общеобразовательная школа

Примеры на деление умножение: Примеры на деление и умножение

Примеры на деление и умножение

Примеры на деление и умножение — для распечатки и интерактивного решения
 
 
  1. Настройте генератор: выберите действия — умножение, деление или деление с остатком, используемые числа и сложность.
  2. Нажмите «Сгенерировать новые примеры».
  3. C полученными примерами можно работать в трёх режимах:

Готовый файл для распечатки — файл для Word’а, который можно распечатать.
Есть вариант примеров на умножение и деление для ученика — с местами для ответов, и вариант для родителей — с указанными ответами.
Задайте количество страниц, нажмите «изменить», и скачивайте готовый файл.

Свой формат печати — для тех, кто хочет скопировать примеры в другой файл, или перенести в другой формат.
Можно установить свой шрифт, количество примеров, количество столбиков.
Есть вариант примеров на умножение и деление для ученика — с местами для ответов, и вариант для родителей — с указанными ответами.

Интерактивные примеры — для тех, кто занимается с планшетом, смартфоном, компьютером, и другим устройством подключённном к интернету.
Задайте нужный шрифт, количество примеров и столбцов и… проверяйте себя on-line.
Если нажать на пример — на экране вместо него появится результат, и ученик сразу сможет проверить себя.

   
   
Образец:  
27 : 38 * 74 * 4
20 : 415 : 36 * 9
72 : 83 * 236 : 9
8 : 48 : 212 : 4
30 : 624 : 648 : 8
6 : 23 * 218 : 9
9 * 745 : 59 * 4
6 * 963 : 92 * 8
48 : 636 : 418 : 3
8 * 76 * 66 * 3
   
Примеры онлайн


Примеры по математике на деление и умножение — генератор примеров различного уровня сложности.

Генератор позволяет создать набор примеров на деление и умножение.
В начале обучения можно создавать примеры на умножение и деление только на одно число. Затем после освоения всей таблицы — создавать примеры на все числа.
Диапазон умножений можно изменять: можно генерировать примеры на умножение только чисел от 2 до 9, и обратные примеры на деление где делитель и частные не больше 9.
По мере освоения таблицы умножения можно давать примеры где умножаютсся двузначные числа.

Для старших школьников 3, 4, 5 классов — примеры на деление и умножение с двузначными и трёхзначными числами.

Примеры на деление с остатком также можно получить как для одного числа в качестве делителя, так и настраивая диапазон чисел.

 
www.L1158.ru | www.1158.su
   
L1158@inbox. ru

примеры на умножение и деление, сложение и вычитание

Ваш ребенок еще только учится в начальной школе, а вы уже задумываетесь о его дальнейшей учебе, развитии и будущем? Это очень похвально. А думали ли вы над тем, что успеваемость ребенка можно улучшить, если заниматься с ним ежедневно по математике всего лишь 15 минут в день дополнительно? И это не выдумки. В материалах этой статьи мы приведем примеры и задачи для школьников начальной школы по математике, а именно, для третьеклассников. (Для удобства решения приведенные ниже задания вы можете распечатать).

Содержание

1. Как учить ребенка учиться
2. Примеры и задачи по математике на умножение и деление
3. Примеры и задачи по математике на сложение и вычитание
4. Вместо заключения

Как учить ребенка учиться

Умеет ли ваш ребенок учиться? Уверена, что многих родителей этот вопрос поставил в тупик. А действительно, что значит «уметь учиться»? Когда ваш юный школьник только пошел в школу, после занятий, возможно, он бежал домой и очень хотел сразу же делать уроки. Так бывает, когда дети очень ждут поступления в 1 класс. Но со временем интересы к своевременному выполнению домашнего задания ослабевают и «домашка» становится скучным времяпровождением.

А ведь именно нежелание выполнять домашние задания, готовиться к школьным рефератам, семинарам и викторинам, становится основной причиной того, что ребенок вначале не хочет, а после и не умеет учиться. Пробелы в знаниях могут накапливаться словно снежный ком, снижая успеваемость школьника и убивая в нем желание учиться.

Чтобы школьник учился этой сложной и ответственной науке – учиться – родители должны всячески помогать ему: составить распорядок дня, учить ребенка выполнять домашнее задание наперед, прорешивать или прописывать дополнительные упражнения, чтобы тренировать и руку для письма, и мозг для устного счета. Математике дается детям начального звена сложнее всего, именно поэтому мы и подготовили для школьников 3 класса этот материал.

Примеры по математике на умножение и деление

Еще во втором классе дети выучили таблицу умножения. Если вы сейчас находитесь в полном заблуждении, как выучить с ребенком таблицу умножения, то рекомендуем к ознакомлению следующий материал по ссылке. На протяжении второго класса школьники постепенно осваивали простые примеры и задачи, используя таблицу умножения, а в третьем классе они оттачивают навыки умножения и сложения.

Задание 1

Заменить сложение вычитанием в тех примерах, в которых от замены знака ответ не изменится:

5 + 5 + 5 =
1 + 1 + 1 + 1 =
0 + 0 + 0 + 0 + 0 =
8 + 8 + 8 + 8 =
7 + 7 — 7 + 7 =
7 + 7 + 7 — 7 =
14 + 14 =
61 + 61 =

Подсказка:

5 + 5 + 5 = 15, если заменить знак «+» на знак «•», то получится
5 • 5 • 5 = 125. 15 не равно 125. Значит, в первом равенстве заменить знак «+» на знак «•» нельзя.

По аналогии решаем стальные равенства и делаем выводы о возможной или невозможной замене знака «+» на знак «•».

Задание 2

Какие выражения нельзя заменить суммой, чтобы ответ не изменился:

0 • 4 =
1 • 0 =
1 • 1 =
1 • 6 =
0 • 9 =
7 • 0 =
5 • 2 =
2 • 2 =

Подсказка:

Вспомните, каким правилом следует пользоваться при умножении на ноль.

Задание 3

Решите примеры:

45 : 5 + 1 =
45 : 5 • 1 =
543 — 5 • 1 =
(543 — 5) • 1 =
423 + 7 • 0 =
(423 + 7) • 1 =
10 — 0 + 4 =
10 • 0 + 4 =

Задание 4

Из каждого выражения на умножение составьте выражения на деление:

6 • 8 =
7 • 1 =
4 • 0 =
0 • 3 =
4 • 9 =

Подсказка

6 • 8 = 48
48 : 8 = 6
48 : 8 = 6

Задание 5

Какое значение имеют следующие выражение:

а : а =
а : 1 =
0 : а =
а : 0 =

Задание 6

Решите примеры:

(596 + 374) • 1 =
596 + 374 • 1 =
(596 + 374) • 0 =
596 + 374 + 0 =
0 • 320 : 1 =
0 + 320 : 1 =

Обязательно повторите с ребенком правила умножения и деления числа на единицу и умножения или деления числа на ноль, а также особенности деления ноля на любое число. Часто именно в этих примерах дети делают ошибки, которые влекут за собой дальнейшее неправильное решение примеров, выражений и задач.

Задание 7 (задача)

В оздоровительный лагерь привезли фрукты: 7 ящиков винограда и 5 ящиков персиков. Масса привезенных персиков составляет 40 килограммов. Какая масса винограда, если ящик винограда на 1 килограмм весит больше, чем ящик персиков.

Решение

Найдем, сколько весит один ящик персиков. Известно, что общая масса персиков составляет 40 кг, а всего ящиков – 5.

Первое действие:
40 : 5 = 8 (кг) весит один ящик персиков.

Теперь найдем, сколько весит один ящик винограда, если известно, что он тяжелее на 1 кг, чем ящик персиков.

Второе действие:
8 + 1 = 9 (кг) весит один ящик винограда.

Теперь находим общую массу всего винограда, если известно, что один ящик весит 9 кг, а всего винограда – 7 ящиков.

Третье действие:
9 • 7 = 63 (кг) – общая масса винограда.

Ответ: масса привезенного винограда составляет 63 кг.

Задание 8

Сосна может расти 600 лет, береза – 350 лет. А ива – в 6 раз меньше от сосны. Что может расти дольше береза или ива? И насколько лет?

Решение

Вначале рассчитаем, сколько лет может расти ива, если известно, что она растет в 6 раз меньше, чем сосна.

Первое действие:
600 : 6 = 100 (лет) может расти ива.

Теперь, когда известно, что ива может расти 100 лет, сравним продолжительность «жизни» березы и ивы. Известно, что береза растет 350 лет, а ива – 100. 350 больше чем 100, значит береза может расти дольше ивы. Чтобы рассчитать, на сколько береза может расти дольше ивы, решаем равенство.

Второе действие:
350 — 100 = 250 (лет) – на столько береза может расти дольше ивы

Ответ: береза может расти дольше ивы на 250 лет.

Важно! Если задачу можно решить несколькими способами, обязательно сообщите об этом ребенку. Пусть потренирует логику и начертит все возможные схем решения задачи, т.е. составить схематическое условие. Ведь правильно составленное условие задачи – это 90% успешного решения.

Задание 9

В понедельник гусеница начала ползти вверх по дереву высотой 9 метров. За день она поднялась вверх на 5 метров, а за ночь – опустилась на 2 метра. На какой день гусеница достигнет верхушки дерева?

Решение

Для начала рассчитаем, на сколько метров поднимается гусеница вверх за один день, с учетом того, что ночью на опускается.

Первое действие:
5 — 2 = 3 (м) гусеница проползает за сутки вверх.

Теперь найдем количеств дней, необходимых на преодоление расстояния 9 метров вверх по дереву.

Второе действие:
9 : 3 = 3 (дня) нужно гусенице, чтобы достичь вершины дерева.

Ответ: 3 дня нужно гусенице, чтобы достичь вершины дерева.

Задание 10

В коробке было 18 килограммов печенья. Сначала из нее взяли 13 килограммов печенья, потом досыпали в 4 раза больше, чем оставалось. Сколько килограммов печенья стало в коробке.

Решение

Сначала найдем, сколько килограммов печенья осталось в коробке, после того, как из нее забрали 13 килограммов.

Первое действие:
18 — 13 = 5 (кг) печенья осталось в коробке

Теперь рассчитаем сколько килограммов печенья досыпали в коробку.

Второе действие:
5 • 4 = 20 (кг) досыпали

Сложим тот вес, который оставался в коробке, и тот, который досыпали, чтобы найти, сколько килограммов печения стало в коробке.

Третье действие:
5 + 20 = 25 (кг) стало

Ответ: 25 килограммов печения стало в коробке.

Задание 11

За лето хозяйка вырастила 208 домашних птиц. Кур и уток было 129, а уток и гусей – 115. Сколько кур, уток и гусей вырастила хозяйка за лето?

Решение

Известно, что кур и уток было 129, а всего птиц – 208. Значит, можно найти количество гусей.

Первое действие:
208 (птиц) – 129 (уток + кур) = 79 гусей

Также известно, что уток и гусей всего 115, значит мы можем найти, сколько было кур.

Второе действие:
208 (птиц) – 115 (уток + гусей) = 93 кур

Теперь, когда мы знаем количество гусей и кур, а также общее количество домашних птиц, мы можем найти количество уток.

Третье действие:
208 — (79 + 93) = 36 уток

Ответ: за лето хозяйка вырастила 79 гусей, 93 кур и 36 уток.

Второй вариант решения

Известно, что кур и уток было 129, а всего птиц – 208. Значит, можно найти количество гусей.

Первое действие:
208 (птиц) – 129 (уток + кур) = 79 гусей

Также известно, что уток и гусей всего 115, значит мы можем найти, сколько было уток

Второе действие:
115 (уток + гусей) – 79 (гусей) = 36 уток

Теперь, когда мы знаем количество гусей и уток по отдельности, а также общее количество домашних птиц, мы можем найти количество кур.

Третье действие:
208 – (79 + 36) = 208 – 115 = 93 кур

Ответ: за лето хозяйка вырастила 79 гусей, 93 кур и 36 уток.

Примеры и задачи по математике на сложение и вычитание

Основной задачей заданий и примеров по математике на сложение и вычитание в третьем классе является популяризация математических знаний и идей, поддержка и развитие математических знаний школьников, стимулирование и мотивация учеников в изучении естественно-математический предметов.

Задание 1

Реши уравнения:

Х – 40 = 60
Х + 4 = 61
Х – 16 = 25
Х + 25 = 84
Х – 45 = 251
Х + 56 = 106
Х + 78 = 301

Задание 2

Расставьте скобки так, чтобы ответом выражения в первом случае было 6, а в втором – 2:

12 : 2 + 2 • 2 =

Подсказка

12 : (2 + 2) • 2 = 6
12 : (2 + 2 • 2) = 2

Важно! Некоторые условия составлены таким образом, чтобы ребенок включал логическое мышление. Прорешивая такие задания он мыслит, делает предположения, размышляет, и находит правильное решение задания.

Задание 3

Перевести в одну систему измерения и решить выражения:

1 м – 5 дм =
1 м – 5 см =
6 м 5 дм – 8 дм =
5 см + 5 см =
15 см + 5 дм =
3 дм – 6 см =
3 дм 5 см – 15 см =
1 дм 2 см – 3 см =
1 м 6 дм – 8 дм =

Задание 4

Из каждого выражения произведения отнять 15 и записать новые выражение и решить их:

7 • 3 =
7 • 6 =
7 • 9 =
8 • 6 =
8 • 4 =
3 • 9 =
4 • 4 =
5 • 7 =

Подсказка

Если 7 • 3 = 21, то 21 – 15 = 6

Задание 5

Решить примеры:

7 • 6 + 7 • 4 =
21 : 3 – 6 =
(35 – 28) • 5 =
(68 – 26) : 7 =
7 + (6 : 2) =
3 – 14 : 2 =
60 – 63 : 7 =
81 – 56 : 7 =
50 + 42 : 7 =

Задание 6 (задача)

В шести одинаковых бочонках 24 литра воды. Сколько литров воды в сети таких же бочонках, на сколько литров больше во втором случае, чем в первом?

Решение

Вначале найдем, сколько воды вмещается в один бочонок.

Первое действие:
24 : 6 = 4 (л) в одном бочонке

Теперь рассчитаем, сколько воды в семи одинаковых бочонках

Второе действие:
4 • 7 = 28 (л) в сети одинаковых бочонках

Найдем ответ на главный вопрос задачи, на сколько литров больше во втором случае, чем в первом.

Третье действие:
28 – 24 = 4 (л) на столько литров больше во втором случае, чем в первом

Ответ: на 4 литра воды больше во втором случае, чем в первом

Задание 7

Отец и сын купили на рынке картошку в 6 одинаковых сетках. Отец принес домой 4 сетки, а сын 2. Всего получилось 18 килограммов картошки. Сколько килограммов принес отец? Сколько килограммов принес сын? На сколько больше килограммов картошки принес отец?

Решение

Рассчитаем, сколько картошки было в одной сетке, если известно, то всего принести 18 килограммов в 6 одинаковых сетках.

Первое действие:
18 : 6 = 3 (кг) в одной сетке.

Теперь узнаем сколько килограммов принес отец и сколько килограммов принес сын.

Второе действие:
3 • 4 = 12 (кг) принес отец

Третье действие:
3 • 2 = 6 (кг) принес сын

Найдем искомую разницу.

Четвертое действие:
12 – 6 = 6 (кг) на столько больше принес отец.

Ответ: Отец принес на 6 килограммов больше картошки, чем сын.

Задание 8

За 5 часов работы двигателя было израсходовано 30 литров бензина. Сколько бензина будет израсходовано за 8 часов работы двигателя. На сколько больше двигатель израсходует бензина за разницу во времени?

Решение

Рассчитаем, сколько бензина расходует двигатель за час своей работы.

Первое действие:
30 : 5 = 6 (л) за один час работы

Рассчитаем, сколько составляет разница во времени?

Второе действие:
8 – 5 = 3 (ч) разница во времени

Теперь можно рассчитать, сколько бензина израсходовано за оставшиеся 3 часа.

Третье действие:
3 • 6 = 18 (л) потрачено за 3 часа.

Ответ: за 3 часа двигатель истратил 18 литров бензина

Второй способ решения

Рассчитаем, сколько бензина расходует двигатель за час своей работы.

Первое действие:
30 : 5 = 6 (л) за один час работы

Рассчитаем, сколько бензина будет израсходовано за 8 часов работы двигателя.

Второе действие:
8 • 6 = 48 (л) израсходовано за 8 часов работы двигателя

Теперь можно рассчитать разницу потраченного топлива.

Третье действие:
48 – 30 = 18 (л) разница потраченного топлива

Ответ: за 3 часа двигатель истратил 18 литров бензина

Важно! Задания на сложение и вычитание не исключают в своем условии или решении возможность других математических действий, например, умножения или деления. Ученик третьего класса уже должен уметь различать в условии требования к сложению и умножению, делению и вычитанию. Именно потому задания по математике для этого класса часто носят смешанный характер.

Задание 9

В двух прудах плавало 56 уток. Когда из первого пруда во второй перелетело 7 уток, то в нем осталось 25. Сколько уток с самого начала плавало во втором пруду?

Решение

Известно, что после того, как из первого пруда улетело 7 уток, в нем осталось 25. Находим количество уток в первом пруду с самого начала.

Первое действие:
7 + 25 = 32 (утки) было в первом пруду.

Теперь можем найти, сколько уток плавало во втором пруду с самого начала.

Второе действие:
56 – 32 = 24 (утки) было во втором пруду.

Ответ: с самого начала во втором пруду было 24 утки.

Задание 10

С первого куста собрали 9 килограммов ягод. Со второго куста собрали на 3 килограммов больше, чем с первого, а с третьего – на 2 килограммов больше, чем со второго. Сколько килограммов ягод собрали с третьего куста? Сколько всего ягод собрали?

Решение

Вначале найдем, сколько килограммов ягод собрали со второго куста.

Первое действие:
9 + 3 = 12 (кг) ягод со второго куста

Теперь определяем, сколько килограммов ягод собрали с третьего куста

Второе действие:
12 + 2 = 14 (кг) год с третьего куста

Когда все составляющие известны, находим ответ на главный вопрос задачи.

Третье действие:
9 + 12 + 14 = 35 (кг) ягод всего

Ответ: всего собрали 35 килограммов ягод.

Вместо заключения

Уделяйте математике достаточно внимания уже с начальной школы. Этот предмет не только тренируем мозг в устном счете, но и умении логически мыслить, развивать смекалку. Постепенно привыкая к выполнению дополнительных и основных заданий, ребенок учится учиться, выполнять требования учителя, грамотно планировать свое время, распределять время для учебы и досуга.

Математические задания для третьеклассников моно составлять самостоятельно по приведенным нами аналогии, это не составит особого труда. Зато ваш ученик сможет больше тренироваться в математике, выполнять задания на каникулах и выходных, а также заниматься дополнительно после школы.

Умножение и деление целых чисел

Умножение и деление целых чисел

Умножение и деление целых чисел

УМНОЖЕНИЕ

ПРАВИЛО 1: Произведение положительного целого числа на отрицательное число отрицательно.

ПРАВИЛО 2: Произведение двух положительных целых чисел положительно.

ПРАВИЛО 3: Произведение двух отрицательных целых чисел положительно.

Примеров:

Правило 1: 1. (+4) x (-2) = -8 2. (-2) x (+5) = -10

Правило 2: 1. (+6) x (+8) = +48 2. (+6) x (+2) = +12

Правило 3: 1. (-6) x (-8) = +48 2. (-2) x (-4) = +8

ОТДЕЛ

ПРАВИЛО 1: Частное положительного целого числа и отрицательного целого числа отрицательно.

ПРАВИЛО 2: Частное двух положительных целых чисел положительно.

ПРАВИЛО 3: Частное двух отрицательных целых чисел положительно.

Примеры:

Правило 1: 1. (-8) / (+4) = -2 2. (-12) / (+6) = -2

Правило 2: 1. (+6) / (-3) = -2 2. (+24) / (-6) = -4

Правило 3. 1. (+9) / (+3) = +3 2. (+16) / (+4) = +4

Правило 4: 1. (-6) / (-2) = +3 2. (-42) / (-7) = +6

ОБЗОР ПРАВИЛ УМНОЖЕНИЯ И ДЕЛЕНИЯ

  1. Если знаки разные, то ответ отрицательный.
  2. Если знаки одинаковые, ответ положительный
  3. .

Проблемы:

  1. (+3) х (-1) = __________
  2. (+7) х (+6) = __________
  3. (-5) х (-5) = ___________
  4. (-8) х (-6) = ___________
  5. (-12) х (+5) = _________
  6. (+16) х (0) = __________
  7. (-30) х (-3) = __________
  8. (-18) х (+23) = ________
  9. (-40) х (-4) = __________
  10. (-11) х (+4) = _________
  11. (+3) х (-8) = __________
  12. (+15) х (0) = __________
  13. (-7) х (-4) = ___________
  14. (+9) х (+8) = __________
  15. (+9) / (+3) = __________
  16. (+10) /(-5) = __________
  17. (-12) / (-3) = __________
  18. (-25) / (+5) = __________
  19. (-45) / (+15) = _________
  20. (-18) / (-6) = __________
  21. (+52) / (13) = __________
  22. (-30) / (+10) = _________
  23. (+14) / (-2) = __________
  24. (+16) / (-4) = __________
  25. (-42) / (+7) = __________
  26. (4) / (2) = _____________
  27. 0 / (-7) = ______________
  28. 0 / (6) = ______________

Ключ ответа Умножение и деление целых чисел

 

  1. 42
  2. 25
  3. 48
  4. 60
  5. 0
  6. 90
  7. 414
  8. 160
  9. 44
  10. 24
  11. 0
  12. 28
  13. 72
  14. 3
  15. 2
  16. 4
  17. 5
  18. 3
  19. 3
  20. 4
  21. 3
  22. 7
  23. 4
  24. 6
  25. 2
  26. 0
  27. 0

Умножение и деление: определение, правила, свойства

  • Автор Прия_Сингх
  • Последнее изменение 10-10-2022

Арифметические операции в математике включают сложение, вычитание, умножение и деление на все типы действительных чисел, включая целые числа. Символ деления представляет собой форму обела в виде горизонтальной линии с точкой над и под линией, \( \div .\). Впервые он был использован в качестве знака деления швейцарским математиком Иоганном Раном в его книге «Teutsche Algebra in \(1659.\)

В математике термин умножение является одной из основных операций и означает многократное сложение числа относительно другого числа. Символ умножения — \(×.\). В этой статье мы предоставим подробную информацию об умножении и делении. Продолжайте читать, чтобы узнать больше!

Умножение: Умножение используется для нахождения произведения двух или более чисел. Умножение также известно как многократное сложение.
Пример: Когда вы хотите умножить числа \(4 \times 12 = 48\) или \(12 + 12 + 12 + 12 = 48.\)
Деление: Деление — это операция, обратная умножению. Так пытаются определить, сколько раз одно число содержится в другом.
Мы знаем, что деление \(20\) на \(5\) означает нахождение числа, которое при умножении на \(5\) дает нам \(20.

\) Такое число есть \(4.\)
Следовательно , мы пишем \(20 \div 5 = 4\) или \(\frac{{20}}{5} = 4.\)
Аналогично, деление \(36\) на \( – 9\) означает нахождение число, которое при умножении на \( – 9\) дает \(\left( {36} \right).\) Такое число равно \( – 4.\)
Поэтому мы пишем \(36 \div \left( { – 9} \right) = – 4\) или \(\frac{{36}}{{ – 9}} = – 4\)
Деление \( – 35\) на \(\left( { – 7} \right)\) означает, какое число нужно умножить на \(\left( { – 7} \right)\), чтобы получить \(\left( { – 35 } \right).\)
Таким числом является \(5.\)
Следовательно, \(\left( { – 35} \right) \div \left( { – 7} \right) = 5\) или \(\frac{{ – 35}}{{ – 7}} = 5.\)
Делимое: Число, которое нужно разделить, называется делимым.
Делитель: Число, которое делится, называется делителем.
Частное:
Результат деления известен как частное.
Остаток: Число, оставшееся после деления, называется остатком.
Здесь \(r\) является остатком, очевидно, \(r = a – bq.\)
Используя эти термины, алгоритм деления можно переформулировать следующим образом: \rm{Делитель}} \times {\rm{Частное}} + {\rm{Остаток}}\)
Пример: Если мы разделим \(26\) на число \(6,\), то делимое равно \(26,\) делитель равен \(6,\), частное равно \(26,\), а остаток равен \(2.\)

Правила умножения и деления

Правила умножения и деления следующие:

Умножение

Чтобы умножить числа, мы следуем данным правилам:
Правило 1: Произведение чисел противоположных знаков равна аддитивной обратной величине произведения их модулей.
Пример: \(7 \times \left( { – 4} \right) = – \left( {7 \times 4} \right) = – 28\)
\(\left( { – 8} \right) \times 5 = — \left( {8 \times 5} \right) = — 40\)
Правило 2: Произведение двух чисел с одинаковыми знаками равно произведению их абсолютных значений.
Пример: \(7 \times 12 = 84\)
\(\left( { – 8} \right) \times \left( { – 13} \right) = 8 \times 13 = 104\)

Подразделение

Вы знаете, что когда делимое отрицательно и делитель отрицателен, частное положительно. Если делимое — отрицательное число, а делитель — положительное число, то частное — отрицательное число.
Таким образом, мы имеем следующие правила деления чисел:
Правило \(1:\) Частное двух чисел, как положительных, так и отрицательных, есть положительное число, равное частному соответствующих фундаментальных значений цифры.
Таким образом, мы разделяем их значения независимо от их знака и ставим знак плюс в частном для деления двух чисел с одинаковыми символами.
Правило \(2:\) Частное положительного и отрицательного чисел является отрицательным числом. Абсолютное значение равно частному соответствующих основных значений чисел.
Таким образом, мы делим их значения независимо от их знака и ставим знак минус в частное для деления чисел с разными знаками. Умножение и деление . Другими словами,
, если \(a\) и \(b\) — любые два целых числа, то \(a \times b = b \times a\)
2. Умножение на ноль: Если \(a\) — любое целое число, то \(a \times 0 = 0 \times a = 0.\)
Другими словами, произведение любого целого числа на ноль всегда равен нулю.
3. Существование тождества умножения: Если \(a\) является целым числом, то \(a \times 1 = a = 1 \times a.\)
Другими словами, произведение любого целого числа на \(1\) — это само число.
Число \(1\) известно как идентификатор умножения или элемент идентификации для умножения целых чисел, поскольку оно не изменяет идентичность (значение) чисел во время операции умножения.
4. Ассоциативность: если \(a,\,c\) целые числа, то
\(\left( {a \times b} \right) \times c = \left( {b \times c} \право)\)
Умножение целых чисел ассоциативно; то есть произведение трех действительных чисел не меняется при изменении их расположения.
5. Дистрибутивность умножения над сложением: Если \(a,\,b,\,c\) любые три целых числа, то
\(a \times \left( {b + c} \right) = a \times b + a \times c\)
\(\left( {b + c} \right) \times a = b \times a + c \times a\)
Умножение целых чисел опережает их сложение.

Деление: Ниже приведены некоторые свойства деления чисел:
1. Если \(a\) и \(b\) являются целыми числами, то \(a \div b\) равно не обязательно целое число.
Пример: \(14 \div 2 = 7.\) Здесь частное является целым числом.
Но в \(15 \div 4,\) мы замечаем, что частное не является целым числом. Здесь результат равен
\(\frac{{15}}{4} = 3\frac{3}{4}.\) частное равно \(3;\) остаток равен \(3\)
2. Если \(a\) — целое число, отличное от \(0,\), то \(a \div a = 1.\)
3. Для каждого целого \(a,\) имеем \(a \ div 1 = a.\)
4. Если \(a\) ненулевое целое, то \(0 \div a = 0\)
5. Если \(a\) целое, то \( a \div 0\) не имеет смысла.
6. Если \(a,\,b,\,c\) целые числа, то
\(a > b \Rightarrow a \div c > b \div c,\), если \(c\) положительно.
\(a > b \Rightarrow a \div c > b \div c,\), если \(c\) отрицательно.

Формулы умножения и деления

Формулы для умножения и деления следующие:

Умножение

Формалы умножения чисел приведены ниже в таблице:

Тип
Тип
тип
типа
Результат Пример
Положительный \( \times \) Положительный Умножить Положительный \(\left(  +  \right)\) \(1 \times 7 = 7\)
Отрицательное \( \times \) Отрицательное Умножение Положительное \(\left(  +  \right)\) \(\left( { – 1} \right) \times \left( { – 7} \right) = 7\)
Положительное \( \times \) Отрицательное Умножить Отрицательное \(\left(  +  \right)\) \(1 \times \left( { – 7} \right) =  – 7\)
Отрицательное \( \times \) Положительное Умножение Отрицательное \(\left(  +  \right)\ ) \(\left( { – 1} \right) \times 7 =  – 7\)

В случае умножения чисел нужно умножать числа без знака. После того, как продукт приобретен, отметьте символ в соответствии с правилом умножения.

Деление

Формулы деления чисел приведены ниже в таблице:

Тип чисел Операция7 0329 Результат Пример
Положит.
Отрицательное \( \div \) Отрицательное Разделить Положительное \(\left(  +  \right)\) \(\left( { – 12} \right) \div \left( { – 6} \right) =  – 2\)
Положительный \( \div \) Отрицательный Разделить Отрицательный \[\left(  –  \right)\] \(12 \div \left( { – 6} \right) =  – 2\)
Отрицательное \( \div \) Положительное Разделить Отрицательное \[\left(  –  \right)\ ] \(\left( { – 12} \right) \div 6 =  – 2\)

То же, что и умножение, вы должны разделить числа без знака, а затем дать символ в соответствии с правило, как указано в таблице.
Деление двух чисел с одинаковыми знаками дает положительное частное, а деление двух чисел с разными знаками дает отрицательное частное.

Факты умножения и деления

Умножение: При умножении четных целых отрицательных чисел результат всегда положительный.
\(\влево(-\вправо) \раз \влево(-\вправо)\влево(-\вправо) \раз \влево(-\вправо) = \влево(+\вправо)\)

Деление: На каждый факт умножения приходится два факта деления.
Пример: Для таблицы номер 5 фактами деления являются \(10 \дел 5 = 2,\,25 \дел 5 = 5\) и \(50 \дел 5 = 10\) и \(5 \ умножить на 2 = 10,\,2 \умножить на 5 = 10.\)

Решенные примеры на умножение и деление

Q.1. Умножьте \(475\) на \(64\), используя свойство дистрибутивности.
Ответ: У нас есть, \(475 \times 64\)
\( = \left( {400 + 70 + 5} \right) \times 64\)
\( = 400 \times 64 + 70 \х 64 + 5 \х 64\) [Используя дистрибутивность]
\( = 25600 + 4480 + 320 = 30400\)

Q. 2. Найдите число, которое при делении на \(46\) дает частное \(11\) и остаток \(18.\)
Ответ: У нас есть,
Делитель \(= 46,\) Частное \(= 11\) и Остаток \(= 18.\)
Нам нужно найти делимое. По алгоритму деления имеем
\({\rm{Дивиденд}} = {\rm{Делитель}} \times {\rm{Частное}} + {\rm{Остаток}}\)
\(\Rightarrow {\ rm{Дивиденд}} = 46 \умножить на 11 + 18\)
\( = 506 + 18 = 524.\)
Следовательно, требуемый ответ равен \(524.\)

Q.3. Найдите произведение \(4 \times 4957 \times 25.\)
Ответ: Заметим, что
\(4 \times 25 = 100\)
Итак, мы можем расставить числа, чтобы найти желаемый продукт
\(4 \times 4925 \times 25 = \left( { 4 \times 25} \right) \times 4957 = 100 \times 4957 = 495700\)
Следовательно, искомый ответ: \(495700.\)

Q.4. Найдите значение: \(\left[ {32 + 2 \times 17 + \left( { – 6} \right)} \right] \div 15\)
Ответ: У нас есть,
\(\left[ {32 + 2 \times 17 + \left( { – 6} \right)} \right] \div 15\)
\( = \left[ {32 + 34 \div \left( { – 6} \right)} \right] \div 15 = \left( {66 – 6} \right) \div 15 = 60 \div 15 = \frac{{60}}{{15}} = 4\)
Следовательно, требуемый ответ равен \(4. \)

Q.5. Определить произведение наибольшего числа четырехзначных и наибольшего числа трехзначных.
Ответ: Мы знаем, что наибольшее четырехзначное число равно \(9999\), а наибольшее трехзначное число равно \(999.\)
\(\следовательно \) Требуемый продукт \( = 9999 \times 999\)
\( = 9999 \times \left( {1000 – 1} \right)\)
\( = 9999 \times 1000 – 9999 \times 1\,\,\,\left[ {\ ,a \times \left( {b – c} \right) = a \times b – a \times c} \right]\)
\( = \left( {1000 – 1} \right) \times 1000 – \влево( {1000 — 1} \вправо) \в 1\)
\( = 1000 \в 1000 — 1000 \время 1 — \влево( {1000 \время 1 — 1 \время 1} \вправо)\)
\(\left[ {\,\left( {a – b} \right) \times c = a \times c – b \times c} \right]\)
\( = 1000000 – 1000 – 10000 + 1\) )
\(= 1000000 – 11000 = 9989001\)

Итог

Умножение помогает нам найти произведение двух или более чисел. Это также известно как повторное добавление. Деление помогает учащимся определить, сколько раз одно число содержится в другом. Деление также известно как повторное вычитание. Для деления используется символ \( \div .\). В делении используются четыре основных термина. Основными терминами, используемыми при делении, являются делимое, делитель, частное и остаток.

Часто задаваемые вопросы об умножении и делении

Q.1. Как легко умножать и делить?
Ответ: Умножение
Например: Когда вы хотите умножить число \(5\) на любое четное число: \(5 \times 4 = \)
Вы должны взять число, которое умножается на \(5\) и разрезается пополам, что означает, что число \(4\) станет \(2.\)

Добавьте число ноль рядом с числом \(2,\), что означает, что вы получили число \(20,\), т. е. \(5 \times 4 = 20.\)
Если вы хотите умножить число \(5 x 4 = 20.\) на любое нечетное число:
Например: \(5 x 3 = \)
Вы должны вычесть единицу из числа, умноженного на \( 5,\), что означает число \(3 – 1 = 2. \)
Теперь снова нужно разделить пополам число \(2\), что означает \(2 – 1 = 1,\), и добавить цифру \ (5\) рядом с цифрой \(1,\), которая дает \(5 \times 3 = 15\)
Деление
Например: Деление на \(5:\) Здесь вам нужно просто- просто умножьте число на \(2\), а затем разделите полученное произведение на число \(10.\)
Если вы делите число \(65432\) на \(5\), то
Вы будете писать как \(65432 \div 5 = \left( {65432 \times 2} \right) \div 10 = 130864 \ дел 10 = 13086,4\)

Q.2. Объясните умножение и деление на примере?
Ответ: При умножении чисел мы находим произведение данных чисел путем их умножения.
Пример: \(3 \times 10 = 30\) или \(10 + 10 + 10 = 30\)
При делении мы делим числа, чтобы получить недостающий множитель, когда заданы два других множителя. Деление также известно как повторное вычитание.
Пример: \(56 \дел 7 = 8,\,56 \дел 8 = 7\) или \(56 – 8 – 8 – 8 – 8 – 8 – 8 – 8. \)

Q .3. Какие \(4\) способы показать умножение?
Ответ: 1. Умножьте числа, используя многократное сложение
2. Умножьте числа, используя метод длинного умножения.
3. Умножьте числа, используя метод сетки.
4. Умножить числа, разделив числа на единицы, десятки, сотни (по разрядности).

Q.4. Какие символы используются для умножения?
Ответ: Символ, который мы используем для представления умножения, представляет собой знак креста \(\left( \times \right),\), а иногда мы также используем точку \(\left( * \right) \) для представления произведения чисел.

Q.5. Какие символы обозначают умножение и деление?
Ответ: Символ, который мы используем для умножения, — это знак креста \(\left( \times \right),\), а иногда мы также используем точку \(\left( \cdot \right) \) или \(\left( * \right)\) для представления произведения чисел.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *