Негосударственное общеобразовательное учреждение Средняя общеобразовательная школа

Умножение отрицательных и положительных дробей: Умножение положительных и отрицательных чисел

Содержание

Умножение и деление положительных и отрицательных чисел

Умножение отрицательных чисел

Правило умножения отрицательных чисел:

Замечание 1

Для умножения двух отрицательных чисел нужно выполнить умножение их модулей.

Согласно правилу можно записать:

$(−a) \cdot (−b)=a \cdot b$,

где $a$ и $b$ – положительные действительные числа.

Из правила умножения следует, что результатом произведения двух отрицательных чисел является положительное число.

Правило умножения справедливо для целых, рациональных и действительных чисел.

Пример 1

Выполнить умножение двух отрицательных чисел $−8$ и $−11$.

Решение.

Найдем модули данных чисел:

$|-8|=8$;

$|-11|=11$.

Произведение модулей равно $8 \cdot 11=88$.

Краткая запись решения:

$(−8) \cdot (−11)= 8 \cdot 11=88$.

Ответ: $(−8) \cdot (−11)=88$.

Помощь со студенческой работой на тему

Умножение и деление положительных и отрицательных чисел

Замечание 2

Для умножения отрицательных рациональных чисел необходимо числа преобразовать к виду смешанных чисел, обыкновенных или десятичных дробей.

Умножение чисел с противоположными знаками

Правило умножения чисел с разными знаками:

Замечание 3

Для умножения чисел с противоположными знаками необходимо выполнить умножение чисел и перед полученным значением поставить знак $«–»$.

Согласно данному правилу можно записать:

$a \cdot (−b)=−(|a| \cdot |b|)$,

$(−a) \cdot b=−(|a| \cdot |b|)$,

где $a$ и $b$ – положительные действительные числа.

Данное правило умножения чисел с противоположными знаками применяется для целых, рациональных и действительных чисел.

Согласно рассмотренному правилу умножение чисел с противоположными знаками сводится к выполнению умножения положительных чисел.

Пример 2

Выполнить умножение положительного числа $7$ и отрицательного числа $–12$.

Решение.

Согласно правилу умножения чисел с противоположными знаками сначала выполним умножение модулей данных чисел:

$|7|=7$;

$|-12|=12$;

$7 \cdot 12=84$.

Поставим знак $«–»$ перед полученным значением и получим $−84$.

Краткая запись решения:

$7 \cdot (–12)=−(7 \cdot 12)=−84$.

Ответ: $7 \cdot (–12)=−84$.

Замечание 4

Для умножения дробных чисел с противоположными знаками необходимо преобразовать данные числа к удобному виду: обыкновенных или десятичных дробей.

Деление отрицательных чисел

Правило деления отрицательных чисел:

Замечание 5

Для деления одного отрицательного числа на другое необходимо выполнить деление модулей данных чисел.

Согласно данному правилу можно записать:

$a:b=|a|:|b|$,

где $a$ и $b$ – отрицательные числа.

Правило выполняется для целых, рациональных и действительных чисел.

Согласно правилу деление отрицательных чисел сводится к делению положительных чисел. Таким образом, в результате деления отрицательных чисел получается положительное число.

Правило деления отрицательных чисел для рациональных и действительных чисел можно сформулировать следующим образом:

Замечание 6

Для деления числа $a$ на число $b$ необходимо выполнить умножение числа $a$ на число $b^{−1}$, которое является обратным числу $b$:

$a:b=a \cdot b^{−1}$.

Данное правило применимо для выполнения деления чисел с противоположными знаками.

Пример 3

Разделить отрицательные числа $−24$ и $−6$.

Решение.

Согласно правилу деления отрицательных чисел найдем модули данных чисел и выполним их деление. Получим:

$|-24|=24$;

$|-6|=6$;

$24:6=4$.

Краткая запись решения:

$(–24):(–6)=|–24|:|–6|=24:6=4$.

Ответ: $(–24):(–6)=4$.

Замечание 7

Для выполнения деления дробных рациональных чисел для удобства нужно преобразовать их к виду обыкновенных дробей, но можно делить и десятичные дроби.

Деление чисел с противоположными знаками

Правило деления чисел с противоположными знаками:

Замечание 8

Для деления положительного числа на отрицательное или отрицательного числа на положительное необходимо выполнить деление модулей данных чисел и перед полученным значением поставить знак $«–»$.

Согласно данному правилу можно записать:

$a:(–b)=−|a|:|–b|$,

$(–a):b=−|–a|:|b|$.{−1}$.

Данное правило применимо для деления отрицательных чисел.

Пример 4

Разделить положительное число $28$ на отрицательное число $–7$.

Решение.

Согласно правилу деления чисел с противоположными знаками найдем модули данных чисел и выполним их деление:

$|28|=28$;

$|-7|=7$;

$28:7=4$.

Поставим знак $«–»$ перед полученным значением и получим $–4$.

Краткая запись решения:

$28:(–7)=-|28|:|-7|=-(28:7)=-4$.

Ответ: $28:(–7) = –4$.

Замечание 10

Для деления дробных рациональных чисел с противоположными знаками числа удобнее представлять в виде обыкновенных дробей.

Умножение и деление отрицательных чисел

Мы уже умеем складывать и вычитать отрицательные числа.

Теперь давайте разберемся с умножением и делением.

Предположим, нам нужно умножить +3 на -4. Как это сделать?

Давайте рассмотрим такой случай. Три человека залезли в долги, и у каждого по 4 доллара долга. Чему равен общий долг? Для того чтобы его найти, надо сложить все три долга: 4 доллара + 4 доллара + 4 доллара = 12 долларов. Мы с вами решили, что сложение трех чисел 4 обозначается как 3×4. Поскольку в данном случае мы говорим о долге, перед 4 стоит знак «-». Мы знаем, что общий долг равен 12 долларам, так что теперь наша задача имеет вид 3х(-4)=-12.

Мы получим тот же результат, если по условию задачи каждый из четырех человек имеет долг по 3 доллара. Другими словами, (+4)х(-3)=-12. А поскольку порядок сомножителей значения не имеет, получаем (-4)х(+3)=-12 и (+4)х(-3)=-12.

Давайте обобщим результаты. При перемножении одного положительного и одного отрицательного числа результат всегда будет отрицательным числом. Численная величина ответа будет той же самой, как и в случае положительных чисел. Произведение (+4)х(+3)=+12. Присутствие знака «-» влияет только на знак, но не влияет на численную величину.

А как перемножить два отрицательных числа?

К сожалению, на эту тему очень трудно придумать подходящий пример из жизни. Легко себе представить долг в сумме 3 или 4 доллара, но совершенно невозможно вообразить -4 или -3 человека, которые залезли в долги.

Пожалуй, мы пойдем другим путем. В умножении при изменении знака одного из множителей меняется знак произведения. Если мы меняем знаки у обоих множителей, мы должны дважды сменить знак произведения, сначала с положительного на отрицательный, а затем наоборот, с отрицательного на положительный, то есть у произведения будет первоначальный знак.

Следовательно, вполне логично, хотя немного странно, что (-3)х(-4)=+12.

Положение знака при умножении изменяется таким образом:

  • положительное число х положительное число = положительное число;
  • отрицательное число х положительное число = отрицательное число;
  • положительное число х отрицательное число = отрицательное число;
  • отрицательное число х отрицательное число = положительное число.

Иначе говоря, перемножая два числа с одинаковыми знаками, мы получаем положительное число. Перемножая два числа с разными знаками, мы получаем отрицательное число.

Такое же правило справедливо и для действия противоположного умножению – для деления.

(+12):(+3)=+4;

(+12):(-3)=-4;

(-12):(+3)=-4;

(-12):(-3)=+4.

Вы легко можете в этом убедиться, проведя обратные операции умножения. Если в каждом из примеров, приведенных выше, вы умножите частное на делитель, то получите делимое, и убедитесь, что оно имеет тот же самый знак, например (-3)х(-4)=(+12).

Поскольку скоро зима, то пора уже подумать о том, в что переобуть своего железного коня, что бы не скользить по льду и чувствовать себя уверено на зимних дорогах. Можно, например, взять шины йокогама на сайте: mvo.ru или какие-то другие, главное, что бы качественный, больше информации и цены вы можете узнать на сайте Mvo.ru.

Материалы по теме:

Поделиться с друзьями:

Загрузка…

Отрицательные дроби. Действия с отрицательными дробями

Отрицательные дроби — это дроби, числитель или знаменатель которых является отрицательным числом.

Отрицательные дроби могут быть записаны по-разному. Например, рассмотрим два частных:

-2 : 7    и    2 : (-7),

каждое из них равно отрицательному числу

Каждое из данных частных можно записать в виде дроби, в которой дробная черта заменит знак деления:

-2 : 7  =  -2     и     2 : (-7)  =  2  .
7 -7

Следовательно, при записи отрицательных дробей знак минус можно ставить перед дробью, перед числителем или перед знаменателем:

Сложение и вычитание

Чтобы сложить две отрицательные дроби, надо сначала привести их к общему знаменателю, а затем сложить числители по правилам сложения рациональных чисел.

Пример.

Приведём дроби к общему знаменателю:

2  +  (- 1 )  =  -8  +  -5  .
5 4 20 20

Теперь сложим числители дробей по правилам сложения рациональных чисел:

-8  +  -5  =  -8 + (-5)  =  -13  =  13  .
20 20 20 20 20

Таким образом:

2  +  (- 1 )  =  -8  +  -5  =
5 4 20 20

-8 + (-5)  =  -13  =  13  .
20 20 20

Для вычисления разности двух отрицательных дробей можно вычитание заменить сложением, взяв уменьшаемое со свои знаком, а вычитаемое с противоположным.

Пример.

5  — (- 11 )  =  5  + (+ 11 )  =
12 12 12 12

5  +  11  =  -5 + 11  =  6  .
12 12 12 12

Сложение и вычитание отрицательных дробей производится по правилам сложения обыкновенных дробей, то есть сначала идёт приведение к общему знаменателю, если это нужно, а затем производятся вычисления.

Умножение и деление

Чтобы найти произведение двух отрицательных дробей, надо знаки минус перенести или в числители, или в знаменатели, а затем перемножить дроби по правилу умножения дробей.

Пример.

2  · (- 4 )  =  -2  ·  -4  =  -2 · (-4)  =  8  .
3 5 3 5 3 · 5 15

Так как при умножении двух отрицательных чисел результат будет положительным, то данный пример можно решить сразу, отбросив оба минуса:

2  · (- 4 )  =  2  ·  4  =  2 · 4  =  8  .
3 5 3 5 3 · 5 15

При умножении отрицательной дроби на положительную результат будет отрицательным.

Пример.

2  ·  4  =  2 · 4  =  8  .
3 5 3 · 5 15

К отрицательным дробям можно применять любые законы умножения. Поэтому предыдущий пример можно переписать так:

4  ·  (- 2 )  =  4 · 2  =  8  .
5 3 5 · 3 15

То есть при умножении положительной дроби на отрицательную результат будет отрицательным.

Чтобы найти частное двух отрицательных дробей, надо знаки минус перенести или в числители, или в знаменатели, а затем произвести вычисления.

Пример.

2  : (- 4 )  =  -2  :  -4  =
3 5 3 5

-2 · 5  =  -10  =  10  .
3 · (-4) -12 12

Знак результата умножения или деления отрицательных дробей можно узнать по правилам знаков целых чисел.

Умножение положительных и отрицательных чисел

Задача 1. Точка движется по прямой слева направо со скоростью 4 дм. в секунду и в настоящий момент проходит через точку A. Где будет находиться движущаяся точка по прошествии 5 секунд?

Нетрудно сообразить, что точка будет находиться на 20 дм. вправо от A. Запишем решение этой задачи относительными числами. Для этого условимся в следующих знакоположениях:

1) скорость вправо будем обозначать знаком +, а влево знаком –, 2) расстояние движущейся точки от A вправо будем обозначать знаком + и влево знаком –, 3) промежуток времени после настоящего момента знаком + и до настоящего момента знаком –. В нашей задаче даны, след., такие числа: скорость = + 4 дм. в секунду, время = + 5 секунд и получилось, как сообразили арифметически, число + 20 дм., выражающее расстояние движущейся точки от A через 5 секунд. По смыслу задачи мы видим, что она относится к умножению. Поэтому решение задачи удобно записать:

(+ 4) ∙ (+ 5) = + 20.

Задача 2. Точка движется по прямой слева направо со скоростью по 4 дм. в секунду и в настоящий момент проходит через точку A. Где находилась эта точка 5 секунд назад?

Ответ ясен: точка находилась влево от A на расстоянии 20 дм.

Решение удобно, согласно условиям относительно знаков, и, имея в виду, что смысл задачи не изменился, записать так:

(+ 4) ∙ (– 5) = – 20.

Задача 3. Точка движется по прямой справа налево со скоростью 4 дм. в секунду и в настоящий момент проходит через точку A. Где будет находиться движущаяся точка спустя 5 секунд?

Ответ ясен: на 20 дм. слева от A. Поэтому, согласно тем же условиям относительно знаков, мы можем записать решение этой задачи так:

(– 4) ∙ (+ 5) = – 20.

Задача 4. Точка движется по прямой справа налево со скоростью по 4 дм. в секунду и в настоящий момент проходит через точку A. Где находилась движущаяся точка 5 секунд тому назад?

Ответ ясен: на расстоянии 20 дм. справа от A. Поэтому решение этой задачи следует записать так:

(– 4) ∙ (– 5) = + 20.

Рассмотренные задачи указывают, как следует распространить действие умножения на относительные числа. Мы имеем в задачах 4 случая умножения чисел со всевозможными комбинациями знаков:

1) (+ 4) ∙ (+ 5) = + 20;
2) (+ 4) ∙ (– 5) = – 20;
3) (– 4) ∙ (+ 5) = – 20;
4) (– 4) ∙ (– 5) = + 20.

Во всех четырех случаях абсолютные величины данных чисел следует перемножить, у произведения приходится ставить знак + тогда, когда у множителей одинаковые знаки (1-й и 4-й случаи) и знак –, когда у множителей разные знаки (случаи 2-й и 3-й).

Отсюда же видим, что от перестановки множимого и множителя произведение не изменяется.

Упражнения.

Выполним один пример на вычисление, где входят и сложение и вычитание и умножение.

Чтобы не спутать порядка действий, обратим внимание на формулу

ab + cd.

Здесь написана сумма произведений двух пар чисел: надо, следовательно, сперва число a умножить на число b, потом число c умножить на число d и затем полученные произведения сложить. Также в формуле

a – bc

надо сперва число b умножить на c и затем полученное произведение вычесть из a.

Если бы требовалось произведение чисел a и b сложить с c и полученную сумму умножить на d, то следовало бы написать: (ab + c)d (сравнить с формулой ab + cd).

Если бы надо было разность чисел a и b умножить на c, то написали бы (a – b)c (сравнить с формулой a – bc).

Поэтому установим вообще, что если порядок действий не обозначен скобками, то надо сначала выполнить умножение, а потом уже сложение или вычитание.

Приступаем к вычислению нашего выражения: выполним сначала сложения, написанные внутри всех маленьких скобок, получим:

Теперь надо выполнить умножение внутри квадратных скобок и затем из вычтем полученное произведение:

Теперь выполним действия внутри витых скобок: сначала умножение и потом вычитание:

Теперь останется выполнить умножение и вычитание:

16. Произведение нескольких множителей. Пусть требуется найти

(–5) ∙ (+4) ∙ (–2) ∙ (–3) ∙ (+7) ∙ (–1) ∙ (+5).

Здесь надо первое число умножить на второе, полученное произведение на 3-е и т. д. Не трудно на основании предыдущего установить, что абсолютные величины всех чисел надо между собою перемножить.

Если бы все множители были положительны, то на основании предыдущего найдем, что и у произведения надо написать знак +. Если бы какой-либо один множитель был отрицателен

напр., (+2) ∙ (+3) ∙ (+4) ∙ (–1) ∙ (+5) ∙ (+6),

то произведение всех предшествующих ему множителей дало бы знак + (в нашем примере (+2) ∙ (+3) ∙ (+4) = +24, от умножения полученного произведения на отрицательное число (в нашем примере +24 умножить на –1) получили бы у нового произведения знак –; умножив его на следующий положительный множитель (в нашем примере –24 на +5), получим опять отрицательное число; так как все остальные множители предполагаются положительными, то знак у произведения более изменяться не может.

Если бы было два отрицательных множителя, то, рассуждая, как выше, нашли бы, что сначала, пока не дошил до первого отрицательного множителя, произведение было бы положительно, от умножения его на первый отрицательный множитель новое произведение получилось бы отрицательным и таковы бы оно и оставалось до тех пор, пока не дойдем до второго отрицательного множителя; тогда от умножения отрицательного числа на отрицательно новое произведение получилось бы положительным, которое таким останется и в дальнейшем, если остальные множители положительны.

Если бы был еще третий отрицательный множитель, то полученное положительно произведение от умножения его на этот третий отрицательный множитель сделалось бы отрицательным; оно таковым бы и осталось, если остальные множители были все положительны. Но если есть еще четвертый отрицательный множитель, то от умножения на него произведение сделается положительным. Рассуждая так же, найдем, что вообще:

Чтобы узнать знак произведения нескольких множителей, надо посмотреть, сколько среди этих множителей отрицательных: если их вовсе нет, или если их четное число, то произведение положительно: если же отрицательных множителей нечетное число, то произведение отрицательно.

Итак, теперь мы легко узнаем, что

(–5) ∙ (+4) ∙ (–2) ∙ (–3) ∙ (+7) ∙ (–1) ∙ (+5) = +4200.

Также

(+3) ∙ (–2) ∙ (+7) ∙ (+3) ∙ (–5) ∙ (–1) = –630.

Теперь нетрудно видеть, что знак произведения, а также и его абсолютная величина, не зависят от порядка множителей.

Удобно, когда имеем дело с дробными числами, находить произведение сразу:

Удобно это потому, то не приходится делать бесполезных умножений, так как предварительно полученное дробное выражение сокращается, сколько возможно.

Пример на вычисление:

правило, примеры, умножение отрицательных чисел на положительные

В данной статье сформулируем правило умножения отрицательных чисел и дадим ему объяснение. Будет подробно рассмотрен процесс умножения отрицательных чисел. На примерах показаны все возможные случаи.

Умножение отрицательных чисел

Определение 1

Правило умножения отрицательных чисел заключается в том, что для того, чтобы умножить два отрицательных числа, необходимо перемножить их модули. Данное правило записывается так: для любых отрицательных чисел –a, -b данное равенство считается верным.

(-а)·(-b)=a·b.

Выше приведено правило умножения двух отрицательных чисел. Исходя из него, докажем выражение: (-а)·(-b)=a·b. Статья умножение чисел с разными знаками рассказывает о том, что равенств а·(-b)=-a·b справедливое, как и (-а)·b=-a·b. Это следует из свойства противоположных чисел, благодаря которому равенства запишутся следующим образом:

(-a)·(-b)=(-a·(-b))=-(-(a·b))= a·b.

Тут явно видно доказательство правила умножения отрицательных чисел. Исходя из примеров явно, что произведение двух отрицательных чисел – положительное число. При перемножении модулей чисел результат всегда положительное число.

Данное правило применимо для умножения действительных чисел, рациональных чисел, целых чисел.

Примеры умножения отрицательных чисел

Теперь рассмотрим подробно примеры умножения двух отрицательных чисел. При вычислении необходимо пользоваться правилом, написанным выше.

Пример 1

Произвести умножение чисел -3 и -5.

Решение.

По модулю умножаемые данные два числа равны положительным числам 3 и 5. Их произведение дает  в результате 15. Отсюда следует, что произведение заданных чисел равно 15

Запишем кратко само умножение отрицательных чисел:

(-3)·(-5)=3·5=15

Ответ: (-3)·(-5)=15.

При умножении отрицательных рациональных чисел, применив разобранное правило, можно мобилизоваться к умножению дробей, умножению смешанных чисел, умножению десятичных дробей.

Нужна помощь преподавателя?

Опиши задание — и наши эксперты тебе помогут!

Описать задание

Пример 2

Вычислить произведение (-0,125)·(-6).

Решение.

Используя правило умножения отрицательных чисел, получим, что  (−0,125)·(−6)=0,125·6. Для получения результата необходимо выполнить умножение десятичной дроби на натуральное число столбиков. Это выглядит так:

Получили, что выражение примет вид (−0,125)·(−6)=0,125·6=0,75.

Ответ:  (−0,125)·(−6)=0,75.

В случае, когда множители – иррациональные числа, тогда их произведение может быть записано в виде числового выражения. Значение вычисляется только по необходимости.

Пример 3

Необходимо произвести умножение отрицательного -2 на неотрицательное log5 13.

Решение

Находим модули заданных чисел:

-2=2 и log513=-log5 3=log5 3.

Следуя из правил умножения отрицательных чисел, получим результат -2·log5 13=-2·log5 3=2·log5 3. Это выражение и является ответом.

Ответ:  -2·log5 13=-2·log5 3=2·log5 3.

Для продолжения изучения темы необходимо повторить раздел умножение действительных чисел.

Автор:
Ирина Мальцевская

Преподаватель математики и информатики. Кафедра бизнес-информатики Российского университета транспорта

Сложение и вычитание отрицательных и положительных чисел. Решение примеров.

Существуют разные типы чисел — четные числа, нечетные числа, простые числа, составные числа. Также на основе знака числа могут быть двух видов — положительные числа и отрицательные числа. Эти числа могут быть представлены на числовой линией. Среднее число в этой строке равно нулю. С левой стороны от нуля находятся отрицательные числа, а с правой стороны — положительные.

Ноль — это нейтральный элемент относительно сложения целых чисел. В основном в этой статье мы будем изучать операции сложения и вычитания с отрицательными числами. Существуют определенные правила для знаков при сложении и вычитании:

  • Для того чтобы сложить два отрицательных числа, надо сложить два числа и поставить знак минус.

\((-2)+(-3)=-5\)

  • Если первое число положительное, а второе отрицательное, смотрим, какое число по модулю больше, отнимаем от большего меньшее число и ставим знак большего числа:

\((-8)+4=4-8=-4\)

\(9+(-4)=9-4=5\)

Для каждого числа кроме \(0\) существует противоположный элемент, при сумме с ним образуется ноль:

\(-9+9=0\)     \(7,1+(-7,1)=0\)

  • При вычитания двух чисел, в которых оба отрицательные, следует знать правило: минус на минус дает плюс. То есть, если стоят рядом два минуса, в сумме получается плюс.

\((-7)-(-6)=(-7)+6=(-1)\)

  • Если первое число положительное, а второе отрицательное, вычитаем по тому же принципу, что и складываем: смотрим, какое число по модулю больше, отнимаем от большего меньшее число и ставим знак большего числа.

\(7-9=-2\) так как \(9>7\)

  • Также не стоит забывать минус на минус дает плюс:

\(7-(-9)=7+9=16\)

Задача 1. Вычислите:

 

  1.  \(4+(-5)\)
  2.  \(-36+15\)
  3. \((-17)+(-45)\)
  4. \(-9+(-1)\)

 

Решение:

 

  1.  \(4+(-5)=4-5=-1\)
  2.  \(-36+15=-21\)
  3. \((-17)+(-45)\) \(=-17-45=-62\)
  4. \(-9+(-1)=-9-1=-10\)

Задача 2. Вычислите:

  1. \(3-(-6)\)
  2.  \(-16-35\)
  3. \(-27-(-5)\)
  4.  \(-94-(-61)\)

Решение:

  1.  \(3-(-6)=3+6=9\)
  2. \(-16-35=-51\)
  3.  \(-27-(-5)=-27+5=-22\)
  4.  \(-94-(-61)=-94+61=-33\)

Больше уроков и заданий по математике вместе с преподавателями нашей онлайн-школы «Альфа». Запишитесь на пробное занятие уже сейчас!


Запишитесь на бесплатное тестирование знаний!

Наши преподаватели

Оставить заявку


Репетитор по математике


Омский государственный педагогический университет


Проведенных занятий:


Форма обучения:


Дистанционно (Скайп)


Репетитор 7-11 классов. Реализую дифференцированный подход к обучению, осуществляю подготовку учеников к ОГЭ и ЕГЭ. Почему я люблю математику? Меня завораживают строки формул и выражений, кажется, что это шифр, к которому нужно подобрать ключ. Поэтому математика — это ключ к тайнам Вселенной.

Оставить заявку


Репетитор по математике


Гомельский государственный университет им. Ф. Скорины


Проведенных занятий:


Форма обучения:


Дистанционно (Скайп)


Репетитор 1-9 классов. Математикой я был увлечен со школы, часто участвовал в олимпиадах. За время своей работы понял, что в изучении предмета большую роль играет эмоциональное отношение ученика к предмету. В школе часто создается впечатление, что математика — это сложно. На занятиях я стараюсь помочь ученикам преодолеть этот психологический барьер (если он есть) и начать решать легко и весело. При обучении использую примеры не только из книг, но и из жизни, помогая формировать образное мышление, которое позволяет просто запоминать формулы и табличные данные.

Оставить заявку


Репетитор по математике


БГПУ им.М.Танка


Проведенных занятий:


Форма обучения:


Дистанционно (Скайп)


Репетитор 1-6 классов. Люблю математику за её красоту и элегантность. «Математика — это музыка в цифрах.» При обучении всегда провожу параллели с примерами из жизни.

Математика 10 класс

  • — Индивидуальные занятия
  • — В любое удобное для вас время
  • — Бесплатное вводное занятие

Курсы ОГЭ

  • — Индивидуальные занятия
  • — В любое удобное для вас время
  • — Бесплатное вводное занятие

Математика по Skype

  • — Индивидуальные занятия
  • — В любое удобное для вас время
  • — Бесплатное вводное занятие

Похожие статьи

Как правильно умножать отрицательные числа?

Основные определения

Вспомним, как отличить положительное число от отрицательного, что такое умножение и какие у него свойства.

Начнем с того, что проведем прямую и отметим на ней начало отсчета — точку нуль (0). А теперь укажем направление движения по прямой вправо от начала координат. В этом нам поможет красивая стрелка:

Два главных определения:

Положительные числа — это точки координатной прямой, которые лежат правее начала отсчета (нуля). Иногда рядом с ними ставят знак плюс — «+», но чаще всего положительные числа никак не обозначают. То есть «+1» и «1» — это одно и тоже число.

Запоминаем!

Положительные числа — это те, что больше нуля, а отрицательные — меньшие.

Отрицательные числа — это точки координатной прямой, которые лежат левее начала отсчета (нуля). Их всегда обозначают знаком минус — «-».

Нуль (0) — ни положительное, ни отрицательное число. Вот это ему повезло!

Числовую ось можно расположить как горизонтально (стрелка вверх), так и вертикально (стрелка вправо).

Если стрелка направлена вверх, то в верхней части от начала отсчета всегда расположены положительные числа, а в нижней — отрицательные. Смотрите:

Прямая, на которой отмечена начальная точка, положительное направление и единичный отрезок, называется координатной или числовой осью.

Умножение — арифметическое действие в котором участвуют два аргумента. Один множимый, второй множитель. Результат их умножения называется произведением.

Свойства умножения

  1. От перестановки множителей местами произведение не меняется.
    a * b = b * a
  2. Результат произведения трёх и более множителей не изменится, если любую группу заменить произведением.
    a * b * c = (a * b) * c = a * (b * c)

Вычислять можно в уме, при помощи таблицы умножения или в столбик. Продвинутые школьники могут использовать онлайн-калькулятор. 

Правило умножения отрицательных чисел: чтобы умножить два отрицательных числа, нужно перемножить их модули. Это значит, что для любых отрицательных чисел -a, -b верно равенство:

А вот как умножить два числа с разными знаками:

  • перемножить модули этих чисел
  • перед полученным числом поставить знак минус

А теперь упростим правила. Сформулируем их в легкой форме с минимумом слов, чтобы проще запомнить:

  • «—» — при умножении минус на минус ответ будет положительным
    или минус на минус дает плюс
  • «-+» — при умножении минуса на плюс ответ будет отрицательным
    или минус на плюс дает минус
  • «+-» — при умножении плюса на минус ответ будет отрицательным
    или плюс на минус дает минус
  • «++» — при умножении плюса на плюс ответ будет положительным
    или плюс на плюс дает плюс.

Примеры умножения отрицательных чисел

Пример 1. Вычислить: (-2)∗(-2) и (-3)∗(-7)

Как решаем:

Вспомним правило: отрицательное число умножить на отрицательное — получается ответ со знаком плюс. Считаем:

 

  1. (-2)∗(-2) = 4
  2. (-3)∗(-7) = 21

Ответ: 4; 21.

Пример 2. Вычислить: (-11)∗11 и (-20)∗2

Как решаем:

Вспомним правило: отрицательное число умножить на положительное — получается ответ со знаком минус. Считаем:

 

  1. -11 * 11 = -121
  2. (-20) * 2 = -40

 Ответ: -121; -40.

Пример 3. Вычислить произведение: 5∗(-5) и 12∗(-8)

Как решаем:

Вспомним правило: умножение положительного на отрицательное число дает отрицательный результат. Считаем:

 

  1. 5 ∗ (-5)= -25
  2. 12 ∗ (-8)= -96

Ответ: -25; -96.

Пример 4. Вычислить произведение: (-0,125 ) * (-6)

Как решаем:

 

  1. Используем правило умножения отрицательных чисел:
    (-0,125 ) * (-6) = 0,125 * 6.
  2. Выполним умножение десятичной дроби на натуральное число столбиком:

Ответ: 0,75.

Умножение отрицательных дробей — Видео и стенограмма урока

Умножение отрицательных дробей

Вот четыре шага для умножения отрицательных дробей. Давайте воспользуемся следующей задачей, чтобы проиллюстрировать шаги.

Помните, что числители — это числа над чертой в дробной части, а знаменатели — это числа под чертой в долях.

Помните, что целое число можно превратить в дробь, просто поместив целое число над 1.Например, целое число 7 становится 7/1.

Попрактикуемся

Давайте вместе попробуем. Давайте найдем произведение -2/7 * 3/4 ​​

Шаг 1) Когда мы умножим числители (2 * 3), ответ будет 6.

Шаг 2) Когда мы умножим знаменатели (7 * 4), ответ равно 28.

Шаг 3) Новая дробь — 6/28. Оба числа делятся на 2 и могут быть упрощены до 3/14.

Шаг 4) У дробей разные знаки, так как одна положительная, а другая отрицательная, поэтому ответ отрицательный.

Произведение -2/7 * 3/4 ​​= -3/14.

Попробуем еще парочку. Не стесняйтесь брать лист бумаги и карандаш и самостоятельно решать следующие задачи, прежде чем искать решение.

Решить: -3/4 * 2/3

Шаг 1) Умножить числители: 3 * 2 = 6

Шаг 2) Умножить знаменатели: 4 * 3 = 12

Шаг 3) Упростить 6/12 ( оба делятся на 6) до 1/2

Шаг 4) Знаки разные, поэтому ответ отрицательный.

Ответ -1/2.

Решить: -1/2 * 3/4 ​​

Шаг 1) Умножить числители: 1 * 3 = 3

Шаг 2) Умножить знаменатели: 2 * 4 = 8

Шаг 3) 3/8 уже в простейшей форме

Шаг 4) Знаки разные, поэтому ответ отрицательный.

Итак, -1/2 * 3/4 ​​= -3/8.

Краткое содержание урока

При умножении дробей помните, что если дроби имеют одинаковый знак, ответ будет положительным, а если дроби имеют разные знаки, ответ будет отрицательным.Также помните, что умножение отрицательных дробей состоит из четырех простых шагов, и это, безусловно, положительный момент!

Умножение и деление на целые числа (предалгебра, изучение и понимание целых чисел) — Mathplanet

Вы также должны обращать внимание на знаки при умножении и делении. Следует помнить два простых правила:

Когда вы умножаете отрицательное число на положительное, произведение всегда отрицательное.

Когда вы умножаете два отрицательных числа или два положительных числа, произведение всегда будет положительным.

Это похоже на правило сложения и вычитания: два знака минус становятся плюсом, а плюс и минус становятся минусом. Однако при умножении и делении вы вычисляете результат, как если бы не было знаков минус, а затем смотрите на знаки, чтобы определить, положительный или отрицательный результат. Два примера быстрого умножения:

$$ 3 \ cdot (-4) = — 12 $$

3 умножить на 4 равно 12. Поскольку существует одно положительное и одно отрицательное число, произведение равно отрицательному 12.

$$ (- 3) \ cdot (-4) = 12 $$

Теперь у нас есть два отрицательных числа, поэтому результат положительный.

Переходя к делению, вы можете вспомнить, что вы можете подтвердить полученный ответ, умножив частное на знаменатель. Если вы ответили правильно, то произведение этих двух чисел должно совпадать с числителем. Например,

$$ \ frac {12} {3} = 4 $$

Чтобы проверить, является ли 4 правильным ответом, мы умножаем 3 (знаменатель) на 4 (частное):

$$ 3 \ cdot 4 = 12 $$

Что произойдет, если разделить два отрицательных числа? Например,

$$ \ frac {(- 12)} {(- 3)} = \:? $$

Чтобы знаменатель (-3) стал числителем (-12), вам нужно умножить его на 4, поэтому частное равно 4.

Итак, частное отрицательного и положительного чисел отрицательно, и, соответственно, частное положительного и отрицательного чисел также отрицательно. Можно сделать вывод, что:

Если вы разделите отрицательное число на положительное, то частное будет отрицательным.

Когда вы делите положительное число на отрицательное, частное также становится отрицательным.

Когда вы делите два отрицательных числа, получается положительное частное.

Те же правила верны и для умножения.

Видеоурок

Вычислить следующие выражения

$$ (- 4) \ cdot (-12), \: \: \: \: \ frac {-12} {3} $$

Умножение и деление отрицательных чисел

Purplemath

Если перейти от сложения и вычитания, как вы производите умножение и деление с отрицательными числами? Собственно, сложную часть мы уже рассмотрели: вы уже знаете правила «знака»:

плюс раз плюс плюс
(добавление большого количества горячих кубиков повышает температуру)

минус раз плюс минус
(удаление большого количества горячих кубиков снижает температуру)

плюс умножить на минус — это минус
(добавление большого количества холодных кубиков снижает температуру)

минус умножить на минус равно плюс
(удаление большого количества холодных кубиков повышает температуру)

MathHelp.com

Правила знаков действуют одинаково для деления; просто замените «раз» на «деленное на». Вот пример правил в разделе:

(Помните, что дроби — это просто еще одна форма деления! «Дроби — это деление»!)


Некоторым людям нравится думать об отрицательных числах в терминах долгов.Так, например, если вы должны 10 долларов шести людям, ваш общий долг составит 6 × 10 долларов = 60 долларов. В этом контексте имеет смысл получить отрицательный ответ. Но в каком контексте может иметь смысл деление отрицательного на отрицательное (и получение положительного)?

Подумайте о том, чтобы перекусить в кафе. Когда вы идете платить, у ребенка возникают проблемы с использованием вашей дебетовой карты. Он проводит по ней шесть раз, прежде чем, наконец, вернуть карту вам. Вернувшись домой, вы проверяете свой банковский счет в Интернете. По сумме можно сказать, что да, он действительно взимал с вас или более одного раза.Некоторая часть этого общего дебета (отрицательная на вашем счете) неверна.

Прежде чем звонить в банк для исправления ситуации, вы хотите подтвердить количество превышенных комиссий. Как в этом разобраться? Вы можете разделить всю сумму (скажем, 76,02 доллара США) на сумму, указанную в квитанции (скажем, 12,67 доллара США), которая является суммой одного платежа. Каждое списание является минусом на вашем счету, поэтому математика составляет:

.

(- 76,02 доллара) ÷ (- 12 долларов.67) = 6

Итак, всего действительно было шесть зарядов. Количество зарядов, 6, при подсчете количества событий, должно быть положительным. В этом реальном контексте деление минуса на минус и получение плюса имеет смысл. И теперь вы знаете, что нужно указать службе поддержки клиентов отменить ровно пять начислений.


Вы можете заметить, что люди отменяют знак минус.Они пользуются тем, что «минус, умноженный на минус, есть плюс». Например, предположим, что у вас есть (–2) (- 3) (- 4). Любые два отрицательных результата при умножении становятся одним положительным. Так что выберите любые два из перемноженных (или разделенных) отрицаний и «отмените» их знаки:

  • Упростить (–2) (- 3) (- 4).

Начну с того, что уберу одну пару знаков «минус».Потом размножу как обычно.

(–2) (- 3) (- 4)

= (–2) (- 3) (–4)

= (+6) (–4)

= –24

Если вам дано длинное умножение с отрицательными числами, просто уберите знаки «минус» в парах:

  • Упростить (–1) (- 2) (- 1) (- 3) (- 4) (- 2) (- 1).

Первое, что я сделаю, это подсчитаю знаки «минус». Один два три четыре пять шесть семь. Итак, есть три пары, которые я могу отменить, оставив одну. В результате мой окончательный ответ должен быть отрицательным. Если я получу положительный результат, я буду знать, что сделал что-то не так.

(–1) (- 2) (- 1) (- 3) (- 4) (- 2) (- 1)

= (–1) (- 2) (–1) (- 3) (- 4) (- 2) (- 1)

= (+1) (+ 2) (–1) (- 3) (- 4) (- 2) (- 1)

= (1) (2) (–1) (- 3) (–4) (- 2) (- 1)

= (1) (2) (+1) (+ 3) (–4) (- 2) (- 1)

= (1) (2) (1) (3) (–4) (- 2) (–1)

= (1) (2) (1) (3) (+4) (+ 2) (–1)

= (1) (2) (1) (3) (4) (2) (- 1)

= (2) (3) (4) (2) (- 1)

= 48 (–1)

= –48

Я получил отрицательный ответ, поэтому знаю, что мой знак правильный.

Вот еще один пример, показывающий тот же процесс отмены в контексте разделения:


Отрицательные скобки

Основная трудность, с которой люди сталкиваются с негативом, заключается в том, чтобы иметь дело со скобками; в частности, в переносе отрицания через круглые скобки. Обычная ситуация примерно такая:

Если бы у вас было «3 ( x + 4)», вы бы знали, что нужно «распределить» 3 «над» круглыми скобками:

3 ( x + 4) = 3 ( x ) + 3 (4) = 3 x + 12

Те же правила применяются, когда вы имеете дело с негативом.Если у вас проблемы с отслеживанием, используйте маленькие стрелки:

проведите по экрану , чтобы просмотреть изображение полностью →


Мне нужно взять 3 в скобки:

3 ( x — 5) = 3 ( x ) + 3 (–5) = 3 x — 15

Здесь я возьму «минус» в скобках; Я буду распределять –2 на x и минус 3.

–2 ( x — 3) = –2 ( x ) — 2 (–3) = –2 x + 2 (+3) = –2 x + 6

Обратите внимание, как я внимательно следил за знаками в круглых скобках. «Минус» был сохранен рядом с цифрой 3 за счет использования еще одного набора круглых скобок. Не стесняйтесь использовать символы группировки, чтобы обозначить предполагаемый смысл как для оценщика, так и для вас самих.


Другая проблема, связанная с предыдущей, связана с вычитанием скобок. Вы можете отслеживать знак вычитания, преобразовав вычитание в умножение на минус:

Я начну с написания маленькой цифры «1» перед круглыми скобками. Затем я нарисую стрелки от этой единицы к терминам в круглых скобках, чтобы напомнить себе о том, что мне нужно сделать.

проведите по экрану , чтобы просмотреть изображение полностью →

Не бойтесь написать эту маленькую цифру «1» и нарисовать эти маленькие стрелки.Вы должны делать все, что вам нужно, чтобы ваша работа была прямой и постоянно получала правильный ответ.

  • Упростить 6 — (3

    x — 4 [1 — x ]).

Я буду работать изнутри, упрощая сначала символы внутренней группировки в соответствии с Порядком операций. Итак, первое, что я сделаю, это возьму –4 через скобки.Тогда я упрощу; Я продолжу, поставив 1 перед круглыми скобками и, чтобы помочь мне отслеживать тот -1, который я буду распространять, я нарисую маленькие стрелки.

проведите по экрану , чтобы просмотреть изображение полностью →


Филиал


  • Упростить

    1 / 3 ( x -2) / 3 .

Это хитрый. Они заставляют меня вычесть дробь. Мне нужно объединить дроби, что означает объединение числителей. Чтобы не упустить из виду, что именно означает этот «минус» (а именно, что я вычитаю весь числитель второй дроби, а не только x ), я конвертирую минус с плюсом –1:

проведите по экрану , чтобы просмотреть изображение полностью →

Обратите внимание, что я преобразовал вычитание дроби в добавление отрицательного числа, умноженного на единицу дроби.Очень легко «потерять» минус, когда вы добавляете такие беспорядочные полиномиальные дроби. Самая распространенная ошибка — ставить минус на x и забывать отнести его к –2. Будьте особенно осторожны с дробями!

Для дополнительной практики со скобками попробуйте здесь.


URL: https://www.purplemath.com/modules/negative3.htm

Рационалов (числа со знаком, включая дроби)

Рационалы (числа со знаком, включая дроби)

Напомним, что целые числа — это положительные и отрицательные целые числа и ноль.Когда дроби и завершающие или повторяющиеся десятичные дроби между целыми числами включены, полная группа чисел упоминается как рациональное число. Это числа со знаком, включая дроби. Более техническое определение рационального числа — это любое число, которое может быть записано в виде дроби, где числитель является целым числом или целым числом, а знаменатель — натуральным числом. Обратите внимание, что дроби могут быть помещены в числовую линию, как показано на рисунке 1

.

Числовая строка, показывающая целые числа и дроби.

Дроби могут быть как отрицательными, так и положительными. Отрицательные дроби обычно записываются следующим образом:

Хотя все они равны.

Правила для знаков при сложении целых чисел применимы и к дробям. Помните: Чтобы сложить дроби, вы должны сначала получить общий знаменатель.

Добавьте следующее.

Правила для знаков при сложении целых чисел также применимы к смешанным числам.

Добавьте следующее.

Правила для знаков при вычитании целых чисел применимы и к дробям. Запомните: Чтобы вычесть дроби, вы должны сначала получить общий знаменатель.

Вычтите следующее.

Правила для знаков при вычитании целых чисел также применимы к смешанным числам. Помните: Чтобы вычесть смешанные числа, вы должны сначала получить общий знаменатель. Если заимствование из столбца необходимо, остерегайтесь простых ошибок.

Вычтите следующее.

Проблемы, подобные предыдущим, обычно легче всего решить, сложив число с большим абсолютным значением наверху, вычтя и сохранив знак числа с большим абсолютным значением.

Правила для знаков при умножении целых чисел применимы и к дробям. Помните: Чтобы умножить дроби, умножьте числители, а затем знаменатели. По возможности всегда упрощайте до минимальных условий.

Умножьте следующее.

Можно отменить при умножении положительной и отрицательной дробей. Просто отмените, как вы это делаете при умножении положительных дробей, но обратите особое внимание на соответствующие знаки.Следуйте правилам знаков при умножении целых чисел, чтобы получить правильный знак. Помните: Отсутствие знака означает, что понимается положительный знак.

Умножьте следующее.

Следуйте правилам знаков при умножении целых чисел, чтобы получить правильный знак. Запомните: Перед умножением смешанных чисел вы должны сначала преобразовать их в неправильные дроби.

Умножьте следующее.

Следуйте правилам знаков при делении целых чисел, чтобы получить правильный знак. Помните: При делении дробей сначала инвертируйте делитель, а затем умножайте.

Разделите следующее.

Следуйте правилам знаков при делении целых чисел, чтобы получить правильный знак. Запомните: Перед тем, как делить смешанные числа, вы должны сначала изменить их на неправильные дроби. Затем вы должны инвертировать делитель и умножить.

Разделите следующее.

Упрощение выражения с помощью дроби

Результаты обучения

  • Определите отрицательные дроби, которые эквивалентны, учитывая, что их отрицательный знак находится в другом месте
  • Упростите выражения, содержащие дробные черты, используя порядок операций

Где идет знак минус в дроби? Обычно перед дробью ставится знак минус, но иногда можно увидеть дробь с отрицательным числителем или знаменателем.Помните, что дроби представляют собой деление. Дробь [латекс] — \ frac {1} {3} [/ latex] может быть результатом деления [latex] \ frac {-1} {3} [/ latex], отрицательного на положительный или деления [latex] \ frac {1} {- 3} [/ latex], положительное за отрицательным. Когда числитель и знаменатель имеют разные знаки, частное отрицательное.

Если и числитель, и знаменатель отрицательны, тогда сама дробь положительна, потому что мы делим отрицательное значение на отрицательное.

[латекс] \ frac {-1} {- 3} = \ frac {1} {3} \ frac {\ text {negative}} {\ text {negative}} = \ text {positive} [/ latex]

Знак минус в дробной части

Для любых положительных чисел [латекс] a \ text {и} b [/ latex],

[латекс] \ frac {-a} {b} = \ frac {a} {- b} = — \ frac {a} {b} [/ latex]

Пример

Какая из следующих фракций эквивалентна [latex] \ frac {7} {- 8}? [/ Latex]

[латекс] \ frac {-7} {- 8}, \ frac {-7} {8}, \ frac {7} {8}, — \ frac {7} {8} [/ latex]

Решение:
Частное положительного и отрицательного отрицательно, поэтому [latex] \ frac {7} {- 8} [/ latex] отрицательно.Из перечисленных фракций [latex] \ frac {-7} {8} \ text {и} — \ frac {7} {8} [/ latex] также отрицательны.

Упрощение выражения с помощью дроби

Полоски дроби действуют как символы группировки. Выражения над и под дробной чертой следует рассматривать так, как если бы они были заключены в круглые скобки. Например, [латекс] \ frac {4 + 8} {5 — 3} [/ latex] означает [латекс] \ left (4 + 8 \ right) \ div \ left (5 — 3 \ right) [/ latex] . Порядок операций говорит нам сначала упростить числитель и знаменатель — как если бы были круглые скобки — перед тем, как делить.
Мы добавим дробные черты к нашему набору символов группировки из раздела «Использование языка алгебры», чтобы получить здесь более полный набор.

Группировка символов

Упростите выражение с помощью дробной линейки

  1. Упростим числитель.
  2. Упростим знаменатель.
  3. Упростите дробь.

Пример

Упростить: [латекс] \ frac {4 + 8} {5 — 3} [/ латекс]

Показать решение

Решение:

[латекс] \ frac {4 + 8} {5 — 3} [/ латекс]
Упростите выражение в числителе. [латекс] \ frac {12} {5 — 3} [/ латекс]
Упростим выражение в знаменателе. {2} +2} [/ latex]
Используйте порядок операций.{2}} {64 — 16} [/ латекс]
Упростим числитель и знаменатель. [латекс] \ frac {16} {48} [/ латекс]
Упростим дробь. [латекс] \ frac {1} {3} [/ латекс]

Пример

Упростить: [латекс] \ frac {4 \ left (-3 \ right) +6 \ left (-2 \ right)} {- 3 \ left (2 \ right) -2} [/ latex]

Показать решение

Решение:

[латекс] \ frac {4 \ left (-3 \ right) +6 \ left (-2 \ right)} {- 3 \ left (2 \ right) -2} [/ латекс]
Умножить. [латекс] \ frac {-12+ \ left (-12 \ right)} {- 6 — 2} [/ латекс]
Упростить. [латекс] \ frac {-24} {- 8} [/ латекс]
Разделить. [латекс] 3 [/ латекс]

Посмотрите это видео, чтобы увидеть еще один пример того, как упростить выражение с помощью дробной линейки, содержащей несколько различных операций.

Умножение положительных и отрицательных чисел: 3 простых правила

При умножении положительных и отрицательных чисел существует меньше правил, чем при сложении и вычитании положительных и отрицательных чисел.Следует запомнить всего три правила:

Правило 1. Положительное число, умноженное на положительное, равно положительному числу.

Это умножение, которое вы делали все время: положительные числа, умноженные на положительные числа, равны положительным числам.

Например, 5 x 3 = 15. 5 — положительное число, 3 — положительное число, а умножение дает положительное число: 15.

Ответ: 5 x 3 = 15.

Правило 2: Отрицательное число, умноженное на положительное, равняется отрицательному числу.

Когда вы умножаете отрицательное число на положительное, ваш ответ — отрицательное число. Не имеет значения, в каком порядке вы умножаете положительные и отрицательные числа, ответ всегда будет отрицательным.

Например: -2 x 4, что по сути то же самое, что -2 + (-2) + (-2) + (-2)

Ответ: -2 х 4 = -8.

И, как мы уже сказали, если около 4 x -2 наоборот, ответ все тот же: -8.

Ответ: 4 х -2 = -8.

Правило 3. Отрицательное число, умноженное на отрицательное число, равняется положительному числу.

Два отрицательных числа дают положительное число, поэтому отрицательное число, умноженное на отрицательное число, дает положительное число. Если вы посмотрите на него на числовой прямой, идя назад и повернувшись лицом в отрицательном направлении, вы двинетесь в положительном направлении.

Например. -2 x -4 отрицательны, поэтому мы знаем, что ответ будет положительным.

Ответ: -2 x -4 = 8.

Вот общее правило, которое следует помнить при умножении положительных и отрицательных чисел:

Два одинаковых знака дают положительный знак:

Два непохожих знака образуют знак минус:

Если вы все еще не понимаете, почему отрицательное число, умноженное на отрицательное, дает положительное число, Диана Браун с факультета математики Университета Джорджии объясняет это разными способами в этой статье.

Скотт из About.com также собрал удобное видео о том, как создать шпаргалку для умножения отрицательных и положительных чисел (прокрутите страницу вниз, и вы найдете видео).

Как складывать, вычитать, умножать и делить положительные и отрицательные числа

Давайте посмотрим на следующую числовую строку и заметим, что каждая точка (точка) на числовой прямой соответствует одному числу:


В числовой строке выше мы видим три типа чисел или целых чисел: отрицательные числа, ноль и положительные числа.Отрицательные числа находятся слева от нуля, поэтому они меньше нуля. Положительные числа справа от нуля, поэтому они больше нуля. Ноль, разделительная точка, не является ни положительным, ни отрицательным.

Для числовой строки выше «1» соответствует или относится к красной точке, «2» относится к зеленой точке, «3» относится к синей точке и так далее. Когда мы перемещаемся вправо по числовой строке, мы увеличиваем числа. Мы определили это как дополнение. Когда мы движемся влево, мы уменьшаемся.И мы определили это как вычитание. Обычно так работает числовая линия.

Когда мы складываем два положительных числа или умножаем два положительных числа, мы получаем положительное число. Однако мы можем вычесть положительное число из положительного, и внезапно мы не получим положительное число!

Например, если мы вычтем 7 из 4, мы начнем с 4 в числовой строке и переместимся влево на 7 позиций. Это подводит нас к -3. Поскольку -3 находится слева от 0, оно меньше нуля.

Глядя на обратную операцию, мы можем сказать, что если 4-7 = -3, то -3 + 7 = 4. И это правильно. Если мы начнем с -3 и переместим на 7 делений вправо, мы получим 4.

Положительные числа — это не только целые числа справа от нуля, но и все типы чисел, такие как дроби, десятичные дроби и радикалы. Отрицательные числа также включают различные формы и различные типы чисел, которые появляются слева от нуля.

У нас не всегда есть числовая линия, с которой можно работать, поэтому нам нужно выучить несколько правил работы с отрицательными числами.Во-первых, нам нужно определить абсолютное значение. Абсолютное значение числа — это количество единиц, отсчитываемых от нуля. Он всегда выражается положительно, но без знака «плюс».

Абсолютное значение 3 равно 3. Абсолютное значение -3 также равно 3. И 3, и -3 — три единицы от нуля. Абсолютное значение обозначается путем написания числа между двумя вертикальными полосами.

| 3 | = 3 и | -3 | = 3

Добавление отрицательных чисел

Если перед числом вы не видите отрицательный или положительный знак, это положительный знак.

При сложении чисел одного знака (положительного или отрицательного) сложите их абсолютные значения и дайте результату тот же знак.

6 + 5 = 11 (6 и 5 положительны; 6 + 5 равно 11, что положительно)

-7 + -8 = -15

(-7 и -8 оба отрицательны; сложите | 7 | + | 8 |, что равно 7 + 8, чтобы получить 15; ответ -15)

Если все числа в добавляемой группе отрицательные: -2 + -3 + -4 = -9, снова сложите абсолютные значения 2 + 3 + 4, чтобы получить 9 и поставить отрицательный знак.

Сложение положительных и отрицательных чисел

При сложении чисел с противоположным знаком возьмите их абсолютные значения, вычтите меньшее из большего и присвойте результату знак числа с большим абсолютным значением.

7 + -3 = | 7 | — | 3 | = 4

-8 + 6 = | 8 | что равно 8 и | 6 | что составляет 6. Вычтите меньшее из большего:

8-6, что дает результат 2 и дает ему знак большего числа, равного 8.

Ответ — -2.

Вычитание положительных и отрицательных чисел

При вычитании положительного числа из отрицательного используйте то же правило, что и для сложения двух отрицательных чисел: сложите абсолютные значения и присвойте разнице отрицательный знак.

-5 — 4 = | 5 | + | 4 | = | 9 | = -9 (это как -5 + -4 = -9)

-2 — 12 = | 2 | + | 12 | = | 14 | = -14

При вычитании отрицательного числа из положительного, двойной отрицательный результат вычитания отрицательного становится положительным, поэтому используйте то же правило, что и для сложения двух положительных чисел: сложите абсолютные значения и присвойте разнице положительный знак.

5 — -4 = | 5 | + | 4 | = 5 + 4 = 9

Если бы вы использовали числовую строку, вы бы пошли влево для вычитания, а затем перевернули (вправо) для отрицательного числа, так что окончательный ответ будет справа от исходного числа.

16 — -10 = | 16 | + | 10 | = 16 + 10 = 26

Аддитивное обратное число — это число с противоположным знаком, так что при сложении двух результат равен нулю.

а + (-а) = 0

Как видите, это положительные и отрицательные числа одного и того же абсолютного значения.

10 + -10 = 0

-24 + 24 = 0

Умножение положительных и отрицательных чисел

При умножении положительного числа и отрицательного числа (или отрицательного числа на положительное число) умножьте абсолютные значения и дайте ответ отрицательный знак.

8 х -5 = | 8 | х | 5 | = 8 x 5 = 40, но дайте ему отрицательный знак, сделав -40

-13 x 3 = -39

9 х -3 = -27

Чтобы умножить несколько чисел, посчитайте количество отрицательных знаков в числах, которые нужно умножить.Если это четное число, произведение будет положительным, а если нечетное, произведение будет отрицательным.

6 х -2 х -3 х 5 = | 6 | х | 2 | х | 3 | х | 5 |

6 x 2 = 12, 12 x 3 = 36 и 36 x 5 = 180

Имеется два отрицательных знака (четное число), поэтому ответ положительный.

Если бы было -6 x -2 x -3 x 5, ответ был бы -180

Умножение двух отрицательных чисел

При умножении двух отрицательных чисел два отрицательных числа компенсируют друг друга, поэтому умножьте абсолютные значения и дайте ответ положительный знак.

-21 х -3 = | 21 | х | 3 | = 63 (остается положительным)

-7 x -8 = | 7 | х | 8 | = 56

Деление отрицательного числа на отрицательное

Чтобы разделить два числа с одинаковым знаком (два положительных или два отрицательных), используйте абсолютные значения, и результат будет положительным.

16 ¸ 4 = | 16 | ¸ | 4 | = 4

-20 ¸ -10 = | 20 | ¸ | 10 | = 2

Деление положительного числа на отрицательное или отрицательного числа на положительное

Чтобы разделить пару чисел с разными знаками (отрицательное на положительное или положительное на отрицательное), используйте абсолютные значения двух чисел и присвойте результату отрицательный знак.

-12 ¸ 3 = | 12 | ¸ | 3 | = 4, но это -4

18 ¸ -3 = | 18 | ¸ | 3 | = 6, но это -6

Использование отрицательных чисел

Отрицательные числа используются для обозначения низких температур. Цифры ниже 0 ° C отрицательны и ниже точки замерзания. (Помните, что значения ниже 32 ° F ниже точки замерзания, но температура часто опускается ниже 0 ° F.)

Отрицательные числа используются для отображения измерений ниже уровня моря.Уровень моря равен 0.

Отрицательные числа используются с деньгами, чтобы показать задолженность или денежную задолженность. Если человек или домохозяйство тратят больше денег, чем зарабатывают, мы говорим, что они «отрицательные на определенную сумму», или называем это «красным», потому что бухгалтеры используют красные чернила для отображения отрицательных чисел.

Больше и меньше и наборы чисел

Набор чисел — это группа чисел, которая соответствует заданному описанию.Например, набор целых чисел меньше 0 будет выражен как n <0. В этом предложении набор чисел, удовлетворяющий условиям, будет состоять из отрицательных целых чисел.

Все целые числа больше 0 будут выражены как n> 0. Набор чисел, удовлетворяющий этим условиям, будет набором всех положительных целых чисел. Каждое из этих целых чисел будет называться членом или элементом этого набора.

Какие целые числа от 3 до 8? Это будет 4, 5, 6 и 7.Другой способ выразить это — набор чисел больше 3, но меньше 8, которые можно представить в виде математического предложения, которое выглядит так:

3

Прочтите это: n такое, что n больше 3 и меньше 8

Поскольку 3

И n <8 или n меньше 8 или 8 больше n

п = 4, 5, 6, 7

Мы могли бы сказать 3 n <8, и в этом случае в ответ было бы включено 3, поэтому n = 3, 4, 5, 6, 7.Знак означает «меньше или равно», а знак означает «больше или равно».

Часто эти ответы «больше» и «меньше» необходимо выражать с помощью числовой строки, потому что было бы невозможно перечислить все числа для ответа.

Добавить комментарий

Ваш адрес email не будет опубликован.