Негосударственное общеобразовательное учреждение Средняя общеобразовательная школа

Примеры на умножение в столбик 4 класс на двузначные: Умножение двузначных чисел в столбик. Примеры с ответами. Скачать pdf или jpg.

Как научиться быстро считать в уме любые числа: техники устного счета

Устный счет – занятие, которым в наше время себя утруждает все меньшее количество людей. Гораздо проще достать калькулятор на телефоне и вычислить любой пример.

Но так ли это на самом деле? В этой статье мы представим математические лайфхаки, которые помогут научиться быстро складывать, вычитать, умножать и делить числа в уме. Причем оперируя не единицами и десятками, а  минимум двухзначными и трехзначными числами.

После освоения методов из этой статьи идея лезть в телефон за калькулятором уже не покажется такой хорошей. Ведь можно не тратить время и посчитать все в уме гораздо быстрее, а заодно размять мозги и произвести впечатление на окружающих (противоположного пола).

Итак, добро пожаловать в увлекательный мир вычислений! Мы собрали советы от наших авторов о том, как улучшить устный счет и стать математическим героем и гением. Кстати, если вам интересна математика, вы можете почитать статью «Пределы для чайников» в нашем блоге.

Предупреждаем! Если вы обычный человек, а не вундеркинд, то для развития навыка счета в уме понадобятся тренировки и практика, концентрация внимания и терпение. Сначала все может получаться медленно, но потом дело пойдет на лад, и вы сможете быстро считать в уме любые числа.

Гаусс и устный счет

 

Карл Фридрих Гаусс

 

Одним из математиков с феноменальной скоростью устного счета был знаменитый Карл Фридрих Гаусс (1777-1855). Да-да, тот самый Гаусс, который придумал нормальное распределение.

По его собственным словам, он научился считать раньше, чем говорить.  Когда Гауссу было 3 года, мальчик взглянул на платежную ведомость своего отца и заявил: «Подсчеты неверны». После того как взрослые все перепроверили, выяснилось, что маленький Гаусс был прав.

В дальнейшем этот математик достиг немалых высот, а его труды до сих пор активно используются в теоретических и прикладных науках. До самой смерти большую часть вычислений Гаусс производил в уме.

Здесь мы не будем заниматься сложными расчетами, а начнем с самого простого.

Сложение чисел в уме

Чтобы научиться складывать в уме большие числа, нужно уметь безошибочно складывать числа до 10. В конечном счете любая сложная задача сводится к выполнению нескольких тривиальных действий.

Чаще всего проблемы и ошибки возникают при сложении чисел с «переходом через 10». При сложении (да и при вычитании) удобно применять технику «опоры на десяток». Что это? Сначала мы мысленно спрашиваем себя, сколько одному из слагаемых не хватает до 10, а потом прибавляем к 10 оставшуюся до второго слагаемого разность.

Например, сложим числа 8 и 6. Чтобы из 8 получить 10, не хватает 2. Затем к 10 останется прибавить 4=6-2. В итоге получаем: 8+6=(8+2)+4=10+4=14

Основная хитрость со сложением больших чисел – разбить их на разрядные части, а потом сложить эти части между собой.

Пусть нам нужно сложить два числа: 356 и 728. Число 356 можно представить как 300+50+6.  Аналогично, 728 будет иметь вид 700+20+8. Теперь складываем:

356+728=(300+700)+(50+20)+(8+6)=1000+70+14=1084

Вычитание чисел в уме

Вычитание чисел тоже будет даваться легко. Но в отличие от сложения, где каждое число разбивается на разрядные части, при вычитании «разбить» нужно только то число, которое мы отнимаем.

Например, сколько будет 528-321? Разбиваем число 321 на разрядные части и получаем: 321=300+20+1.

Теперь считаем: 528-300-20-1=228-20-1=208-1=207

Попробуйте визуализировать процессы сложения и вычитания. В школе всех учили считать в столбик, то есть сверху вниз. Один из способов перестроить мышление и ускорить счет – считать не сверху вниз, а слева направо, разбивая числа на разрядные части.

Умножение чисел в уме

Умножение – это многократное повторение числа. Если нужно умножить 8 на 4, это значит, что число 8 нужно повторить 4 раза.

8*4=8+8+8+8=32

Так как все сложные задачи сводятся к более простым, нужно уметь умножать все однозначные числа. Для этого существует отличный инструмент – таблица умножения. Если вы не знаете эту таблицу на зубок, то мы настоятельно рекомендуем первым делом выучить ее и только потом приниматься за практику устного счета. К тому же учить там, по сути, нечего.

 

Таблица умножения

 

Умножение многозначных чисел на однозначные

Сначала потренируйтесь в умножении многозначных чисел на однозначные. Пусть нужно умножить 528 на 6. Разбиваем число 528 на разряды и идем от старшего к младшему. Сначала умножаем, а потом складываем результаты.

528=500+20+8

528*6=500*6+20*6+8*6=3000+120+48=3168

Кстати! Для наших читателей сейчас действует скидка 10% на любой вид работы

Умножение двузначных чисел

Здесь тоже нет ничего сложного, только нагрузка на краткосрочную память немного больше.

Перемножим 28 и 32. Для этого сведем всю операцию к умножению на однозначные числа. Представим 32 как 30+2

28*32=28*30+28*2=20*30+8*30+20*2+8*2=600+240+40+16=896

Еще один пример. Умножим 79 на 57. Это значит, что на нужно взять число «79» 57 раз. Разобьем всю операцию на этапы. Сначала умножим 79 на 50, а потом – 79 на 7.

  • 79*50=(70+9)*50=3500+450=3950
  • 79*7=(70+9)*7=490+63=553
  • 3950+553=4503

Умножение на 11

Вот хитрый прием быстрого устного счета, который поможет умножить любое двузначное число на 11 с феноменальной скоростью.

Чтобы умножить двузначное число на 11, две цифры числа складываем друг с другом, и получившуюся сумму вписываем между цифрами исходного числа. Получившееся в итоге трехзначное число — результат умножения исходного числа на 11.

Проверим и умножим 54 на 11.

  • 5+4=9
  • 54*11=594

Возьмите любое двузначное число, умножьте его на 11 и убедитесь сами — эта хитрость работает!

Возведение в квадрат

С помощью другого интересного приема устного счета можно легко и быстро возводить двузначные числа в квадрат.

Особенно просто это делать с числами, которые заканчиваются на 5.

Результат начинается с произведения первой цифры числа на следующую за ней по иерархии. То есть, если эту цифру обозначить через n, то следующей за ней по иерархии цифрой будет n+1. Результат заканчивается на квадрат последней цифры, то есть квадрат 5.

Проверим! Возведем в квадрат число 75.

  • 7*8=56
  • 5*5=25
  • 75*75=5625

 

Раньше все считали без калькуляторов

 

Деление чисел в уме

Осталось разобраться с делением. По сути, это операция, обратная умножению. С делением чисел до 100 никаких проблем вообще возникать не должно – ведь есть таблица умножения, которую вы знаете на зубок.

Деление на однозначное число

При делении многозначных чисел на однозначное необходимо выделить максимально большую часть, которую можно разделить с помощью таблицы умножения.

Например, есть число 6144, которое нужно разделить на 8. Вспоминаем таблицу умножения и понимаем, что на 8 будет делиться число 5600. Представим пример в виде:

6144:8=(5600+544):8=700+544:8

Далее из числа 544 также выделяем максимально большое число, которое делится на 8. Имеем:

544:8=(480+64):8=60+64:8

Осталось разделить 64 на 8 и получить результат, сложив все результаты деления

64:8=8

6144:8=700+60+8=768

Деление на двузначное число

При делении на двузначное число нужно пользоваться правилом последней цифры результата при умножении двух чисел.

При умножении двух многозначных чисел последняя цифра результата умножения всегда совпадает с последней цифрой результата умножения последних цифр этих чисел.

Например, умножим 1325 на 656. По правилу, последняя цифра в получившемся числе будет 0, так как 5*6=30. Действительно, 1325*656=869200.

Теперь, вооружившись этой ценной информацией, рассмотрим деление на двузначное число.

Сколько будет 4424:56?

Первоначально будем пользоваться методом «подгона» и найдем пределы, в которых лежит результат. Нам нужно найти число, которое при умножении на 56 даст 4424. Интуитивно попробуем число 80.

56*80=4480

Значит, искомое число меньше 80 и явно больше

70. Определим его последнюю цифру. Ее произведение на 6 должно заканчиваться цифрой 4. Согласно таблице умножения, нам подходят результаты 4 и 9. Логично предположить, что результатом деления  может быть либо число 74, либо 79. Проверяем:

79*56=4424

Готово, решение найдено! Если бы не подошло число 79, второй вариант обязательно оказался бы верным.

 

Картина Н.П. Богданова-Бельского «Устный счёт. В народной школе С. А. Рачинского»

 

Полезные советы

В заключение приведем несколько полезных советов, которые помогут быстро научиться устному счету:

  • Не забывайте тренироваться каждый день;
  • не бросайте тренировки, если результат не приходит так быстро, как хотелось бы;
  • скачайте мобильное приложение для устного счета: так вам не придется самостоятельно придумывать себе примеры;
  • почитайте книги по методикам быстрого устного счета. Существуют разные техники устного счета, и вы сможете овладеть той, которая лучше всего подходит именно вам.

Польза устного счета неоспорима. Тренируйтесь, и с каждым днем вы будете считать все быстрее и быстрее. А если вам понадобится помощь в решении более сложных и многоуровневых задач, обращайтесь к специалистам студенческого сервиса за быстрой и квалифицированной помощью!

Урок 3. Традиционное умножение в уме

Давайте рассмотрим, как можно умножать двузначные числа, используя традиционные методы, которым нас обучают в школе. Некоторые из этих методов, могут позволить вам быстро перемножать в уме двузначные числа при достаточной тренировке. Знать эти методы полезно. Однако важно понимать, что это лишь вершина айсберга.

В данном уроке рассмотрены наиболее популярные приемы умножения двузначных чисел.

Первый способ – раскладка на десятки и единицы

Самым простым для понимания способом умножения двузначных чисел является тот, которому нас научили в школе. Он заключается в разбиении обоих множителей на десятки и единицы с последующим перемножением получившихся четырех чисел. Этот метод достаточно прост, но требует умения удерживать в памяти одновременно до трех чисел и при этом параллельно производить арифметические действия.

Например: 63*85 = (60+3)*(80+5) = 60*80 + 60*5 +3*80 + 3*5=4800+300+240+15=5355

Проще такие примеры решаются в 3 действия. Сначала умножаются десятки друг на друга. Потом складываются 2 произведения единиц на десятки. Затем прибавляется произведение единиц. Схематично это можно описать так:

  • Первое действие: 60*80 = 4800 — запоминаем
  • Второе действие: 60*5+3*80 = 540 – запоминаем
  • Третье действие: (4800+540)+3*5= 5355 – ответ

Вывод. Не трудно убедиться в том, что этот способ не является самым эффективным, то есть позволяющим при наименьших действиях получить правильный результат. Следует принять во внимание другие способы.

Второй способ – арифметические подгонки

Приведение примера к удобному виду является достаточно распространенным способом счета в уме. Подгонять пример удобно, когда вам нужно быстро найти примерный или точный ответ. Желание подгонять примеры под определенные математические закономерности часто воспитывается на математических кафедрах в университетах или в школах в классах с математическим уклоном. Людей учат находить простые и удобные алгоритмы решения различных задач. Вот некоторые примеры подгонки:

Пример 49*49 может решаться так: (49*100)/2-49. Сначала считается 49 на сто – 4900. Затем 4900 делится на 2, что равняется 2450, затем вычитается 49. Итого 2401.

Произведение 56*92 решается так: 56*100-56*2*2*2. Получается: 56*2= 112*2=224*2=448. Из 5600 вычитаем 448, получаем 5152.

Этот способ может оказаться эффективнее предыдущего только в случае, если вы владеете устным счетом на базе перемножения двузначных чисел на однозначные и можете держать в уме одновременно несколько результатов. К тому же приходится тратить время на поиск алгоритма решения, а также уходит много внимания за правильным соблюдением этого алгоритма.

Вывод. Способ, когда вы стараетесь умножить 2 числа, раскладывая их на более простые арифметические процедуры, отлично тренирует ваши мозги, но связан с большими мысленными затратами, а риск получить неправильный результат выше, чем при первом методе.

Третий способ — мысленная визуализация умножения в столбик

56*67 – посчитаем в столбик.

Наверное, счет столбиком содержит максимальное количество действий и требует постоянно держать в уме вспомогательные числа. Но его можно упростить. Во втором уроке рассказывалось, что важно уметь быстро умножать однозначные числа на двузначные. Если вы уже умеете это делать на автомате, то счет в столбик в уме для вас будет не таким уж и трудным. Алгоритм таков

Первое действие: 56*7 = 350+42=392 – запомните и не забывайте до третьего действия.

Второе действие: 56*6=300+36=336 (ну или 392-56)

Третье действие: 336*10+392=3360+392=3 752 – тут посложнее, но вы можете начинать называть первое число, в котором уверены – «три тысячи…», а пока говорите, складывайте 360 и 392.

Вывод: счет в столбик напрямую сложен, но вы можете, при наличии навыка быстрого умножения двузначных чисел на однозначные, его упросить. Добавьте в свой арсенал и этот метод. В упрощенном виде счет в столбик является некоторой модификацией первого метода. Что лучше – вопрос на любителя.

Как можно заметить, ни один из описанных выше способов не позволяет считать в уме достаточно быстро и точно все примеры умножения двузначных чисел. Нужно понимать, что использование традиционных способов умножения для счета в уме не всегда является рациональным, то есть позволяющим при наименьших усилиях достигать максимального результата.

Евгений Буянов

2 Простая арифметика4 Частные методики →

Как умножать двузначные числа на двузначные числа | Математика для 4 класса

На прошлом уроке вы научились умножать однозначные числа на четырехзначные.

Теперь давайте научимся умножать двузначных чисел на двузначные числа .

Понимание 2-значного умножения 2-значного

42 × 23 = ?

Выглядит круто. 🙀 Но не беспокойтесь.

Мы можем разбить его на простые шаги.

Весь фокус в Сплит 2 3 в 20 + 3 ‘.

Сделайте паузу и просмотрите эти шаги, чтобы увидеть, получили ли вы это. 👆

Мы разделяем проблему на две более простые задачи умножения:

42 × 23 =
42 × (
20 + 3 ) =
(
42 × 20000699000) 6)
( 42 × 2000069955) 6)
( 42 42 × 9000) ) + ( 42 × 3 ) =

Они показывают, какие операции, такие как умножение или сложение, вы выполняете в первую очередь.

Подсказка: На самом деле вы только что использовали то, что называется распределительным свойством умножения. Вы узнаете больше об этом в следующем уроке.

Итак, попробуем найти произведение каждой более простой части. Это будет иметь смысл через мгновение.

Сначала, давайте найдем 42 × 3.

42 × 3 = 126

Теперь давайте найдем 42 × 20.

. Потому что 20 20 2066666666566666666666665. кратное 10 , , мы можем решить 42 × 20 с помощью , найдя 42 × 2 и добавив «0» в конце произведения.

Очень хорошо. 👍

42 × 2 0 = 84 0

Теперь добавим два продукта.

Итак,

42 × 23 = 966 ​​

Отличная работа! 👏 

Примерно так можно представить умножение двух двузначных чисел. Вы разбиваете его на два более простых умножения, которые в конце складываете вместе.

Теперь давайте научимся делать это еще быстрее.

Умножение с использованием метода столбцов

Давайте вместе решим тот же пример, но уже более удобным способом.

42 × 23 = ?

Во-первых, запишите числа в виде столбца, начиная с большего числа.

Затем начните с , умножив 42 на 3, точно так же, как мы делали раньше.

Сначала умножьте 2 на 3.

Затем умножьте 4 на 3.

Молодец! 👏

Теперь умножим 42 на 20. ✅

Для этого поставим 0 в конце нашего произведения, а просто найдем 42 × 2.

Сначала умножьте 2 на 2.

Затем умножьте 4 на 2.

Хорошая работа.

Можете ли вы угадать последний шаг?

Наконец, добавьте два продукта. ✅

Итак,

42 × 23 = 966 ​​

Мы получили тот же ответ, что и раньше, на этот раз используя только метод столбца. ✅ 

Давайте попробуем последний пример, потому что это действительно важный навык.

35 × 79 = ?

Сначала напишите числа в столбце формы , начиная с большего числа.

Начнем с , умножив 79 × 5.

Очень хорошо! 👏

Теперь поставим ноль на разряд единиц следующего товара. Мы всегда делаем это.

Также давайте удалим все переносы из первого умножения (во избежание путаницы).

Отлично. 👏

Теперь умножим на 79 × 3.

Наконец, давайте добавим два продукта , чтобы получить ответ.

Итак,

35 × 79 = 2765 ✅

Круто!

Умножение 2 цифр на 2 цифры Обзор

ШАГ 1: Запишите числа в столбце формы , одно под другим, начиная с большего числа.

ШАГ 2: Умножьте верхний коэффициент на разряд единиц цифра нижнего множителя и напишите произведение.

ШАГ 3: Поставьте «0» на разряд единиц следующего продукта. Удалите любой перенос из первого умножения (во избежание путаницы).

ШАГ 4: Умножьте верхний коэффициент на Десятки, поместите цифру нижнего коэффициента и запишите произведение.

ШАГ 5: Сложите два продукта вместе, чтобы получить ответ.

Поздравляем! 🎉 

Теперь вы знаете, как умножать двузначные числа на двузначные.

Начните с приведенной ниже практики, чтобы овладеть навыком.

Умножение двузначных чисел | Как умножать, методы, примеры

Введение

Умножение — это одна из четырех основных математических операций, а остальные три — это сложение, вычитание и деление. Прежде чем мы перейдем к изучению того, как умножать двузначные числа, давайте вспомним, что мы подразумеваем под умножением.

Как определить умножение?

Умножение определяется как процесс нахождения произведения двух или более чисел. Полученный таким образом результат называется продуктом . Предположим, вы купили 6 ручек в один день и 6 ручек на следующий день. Всего ручек, которые вы купили, теперь 2 умножить на 6 или 6 + 6 = 12.

Это также можно записать как 2 x 6 = 12

Не тот символ, который используется для умножения. Символ (x) обычно используется для обозначения умножения. Другими распространенными символами, которые используются для умножения, являются звездочка (*) и точка (.)  

Символ умножения

Обратите внимание на символ, используемый в приведенном выше примере для умножения. Символ (x) обычно используется для обозначения умножения. Другими распространенными символами, которые используются для умножения, являются звездочка (*) и точка (.)  

Теперь давайте рассмотрим некоторые важные термины, которые используются при умножении двух чисел.

Важные термины при умножении

Некоторые важные термины, используемые при умножении – 

Множимое . Число, которое нужно умножить, называется множимым.

Множитель — Число, на которое мы умножаем, называется множителем.

Произведение – Результат, полученный после умножения множителя на множимое, называется произведением.

Связь между множителем, множимым и произведением может быть выражена как –

Множитель ×  Множитель = Произведение

Давайте разберемся с этим на примере.

Предположим, у нас есть два числа 9 и 5. Мы хотим умножить 9 на 5.

Итак, мы выражаем это как 9 x 5, что дает нам 45.

Следовательно, 9 x 5 = 45

Здесь 9 равно множимое, 5 — множитель, 45 — произведение.

Теперь, когда мы поняли, что мы подразумеваем под умножением и терминами, связанными с ним, давайте перейдем к изучению умножения однозначных чисел.

Теперь давайте разберемся, как выполнять умножение, когда у нас есть многозначные числа.

Как умножать двузначные числа?

Прежде чем мы приступим к пониманию умножения двузначных чисел, важно вспомнить, что подразумевается под двузначными числами?

Напомним, что каждая цифра числа имеет разрядное значение. Например, число 5 — это однозначное число, где 5 стоит на месте единицы. Точно так же в числе 27 цифра 2 стоит на месте десятков, а цифра 7 — на месте единиц. Итак, как мы определяем двузначные числа? Двузначные числа — это числа, состоящие из 2 цифр, т. е. числа, состоящие из цифр только на разрядах единиц и десятков. Например, числа 55 и 67 двузначные.

Теперь давайте перейдем к изучению умножения двузначных чисел. Когда дело доходит до умножения двузначных чисел, есть два метода умножения чисел. Этими методами являются метод расширенной записи и метод столбца. Давайте разберемся в обоих методах.

Метод расширенной записи

В методе расширенной записи мы расширяем множимое по разрядным значениям, а затем умножаем каждое число на множитель. Затем мы суммируем все полученные результаты, чтобы получить окончательный ответ. Давайте разберемся на примере.

Например, умножить 35 на 40

Решение

Мы решим это шаг за шагом.

Шаг 1 – Запишите число (множимое) в развернутом виде. Получаем,

35 = 30 + 5

Шаг 2 – Умножаем каждое число на заданное число (множитель) по одному. Получаем,

30 х 40 + 5 х 40 = 1200 + 200

Шаг 3 — Складываем полученные результаты. Получаем,

1200 + 200 = 1400

Отсюда 35 х 40 = 1400

Этот метод, хотя и прост, может не подходить для больших чисел. Но он используется для понимания основных понятий умножения.

Метод столбца

В этом методе мы разбиваем числа на столбцы и умножаем числа на множимое одно за другим. Есть два сценария использования этого метода.

Давайте разберемся с ними один за другим

Умножение без перегруппировки

Этот метод вступает в силу, когда у нас есть меньшие числа, которые не требуют переноса каких-либо чисел на следующий разряд. Давайте разберемся на примере.

Например, умножьте 21 на 32

 Решение

Мы будем использовать следующие шаги, чтобы получить наш результат.

Шаг 1. Сначала мы записываем множимое и множитель в столбцах. Здесь у нас есть 21 как множимое и 32 как множитель.

Шаг 2. Теперь умножаем число, стоящее на месте множимого, т. е. 1, на число, стоящее на месте множителя, которое в данном случае равно 2. Получаем

. Шаг 3. Теперь умножаем число в десятом месте множимого на 2. Получаем

Шаг 4. Теперь нам нужно поставить 0 на место единиц в следующей строке в качестве заполнителя. Мы получим

. Шаг 5 Поскольку мы завершили умножение множимого на первую цифру множителя, мы выполняем те же действия, что и выше для умножения множимого на следующее число множителя, а затем пишем результатом будет строка напротив 0, которую мы поместили в качестве заполнителя на предыдущем шаге. Получим –

Шаг 6 Теперь, когда мы перемножили все цифры множителя с множимым, сложим полученные цифры по вертикали. мы получим

Полученный результат и есть наш ответ. Следовательно, 21 x 32 = 672

Умножение с перегруппировкой

В приведенном выше случае у нас есть небольшие умножения, которые не требуют двузначных результатов ни на одном шаге. Но в случае больших чисел потребуется перенести число на число со следующим значением разряда. Это называется умножением с перегруппировкой. Давайте разберемся на примере.

Например, умножить 25 на 34

Решение

Мы будем использовать следующие шаги, чтобы получить наш результат.

Шаг 1. Сначала мы записываем множимое и множитель в столбцах.

Шаг 2. Умножьте цифру единицы множимого на 4. У нас 4 x 5 = 20. Запишите 0 в столбце единиц и перенесите 2 в столбец десятков.

Шаг 3. Умножаем десятый разряд множимого на 4. Получаем 2 x 4 = 8. Прибавляя к нему перенесенные 2, получаем 8 + 2 = 10 Теперь запишем 0 в столбце десятков и перенесем 1 в сто столбик.

Шаг 4 Теперь нам нужно поставить 0 на место единиц в следующей строке в качестве заполнителя. Мы получим

. Шаг 5 Поскольку мы завершили умножение множимого на первую цифру множителя, мы выполняем те же действия, что и выше для умножения множимого на следующее число множителя, а затем пишем результатом будет строка напротив 0, которую мы поместили в качестве заполнителя на предыдущем шаге. Получим –

Шаг 6 Теперь, когда мы перемножили все цифры множителя с множимым, сложим полученные цифры по вертикали. мы получим

Полученный результат и есть наш ответ. Следовательно, 25 x 34 = 850

Вышеуказанные шаги могут быть обобщены для определения умножения, которое широко известно как длинное умножение. Определим эти шаги.

Длинное умножение

Длинное умножение похоже на метод столбца, за исключением того факта, что здесь мы умножаем большие числа. Этот метод используется, когда множимое больше 9, т. е. множимое больше однозначного числа. Этот метод включает в себя следующие этапы –

  1. Сначала запишем множимое и множитель столбцами.
  2. Сначала умножьте число, стоящее на месте единицы множителя, на все числа множимого и запишите их горизонтально.
  3. Убедитесь, что вы записываете числа справа налево и каждое число находится под соответствующим разрядом множимого.
  4. Теперь перейдите к следующей строке.
  5. Поставьте 0 на месте единицы в этой строке.
  6. Теперь найдите цифру в разряде десятков множителя. Умножьте число, стоящее в десятом разряде множителя, на все числа множимого и запишите их горизонтально в той строке, где вы отметили 0,9.0510
  7. Снова перейти на следующую строку.
  8. Поставьте 0 на месте единиц и десятков в этой строке.
  9. Теперь найдите цифру в разряде сотен множителя. Умножьте число, стоящее в сотенном разряде множителя, на все числа множимого и запишите их горизонтально в той строке, где вы отметили два нуля.
  10. Продолжайте в том же духе, добавляя дополнительный ноль в каждую строку, пока не дойдете до конца множителя 
  11. Сложите числа по вертикали в соответствии с их разрядностью.
  12. Полученное таким образом число и есть ваш результат.

Давайте разберем это на примере

Например, Умножьте 32 на 13

Решение

  1. Сначала мы запишем множимое и множитель в столбцах.
  1. Затем умножьте число, стоящее на месте единицы множителя, на все числа множимого и запишите их горизонтально.
  1. Поместите 0 на место единиц следующей строки
  1. Теперь найдите цифру в разряде десятков множителя. Умножьте число, стоящее в десятом разряде множителя, на все числа множимого и запишите их горизонтально в строке, где вы отметили 0.
  1. В множимом больше нет числа. Теперь сложите числа по вертикали в соответствии с их разрядностью.

Окончательный ответ: 416. Следовательно, 32 x 13 = 416

Давайте посмотрим на другой пример, где мы 3 цифры в множимом.

Например, Умножить 53 на 25

Решение

1. Сначала запишем множимое и множитель в столбцы

  1. Затем умножим число, стоящее на месте единицы, на все числа множителя множимое и запишем их горизонтально.
  1. Поставьте 0 на месте единицы следующей строки
  1. Теперь найдите цифру в разряде десятков множителя. Умножьте десятичное число множителя на все числа множимого и запишите их горизонтально в строке, где вы отметили 0.
  1. Теперь, когда мы умножили все цифры множителя на множимое, мы добавит полученные цифры по вертикали. Получим

Отсюда 53 х 25 = 1325

Решенные примеры

Пример 1 В кинозале 58 рядов, в каждом ряду 25 мест. Сколько человек может разместиться в зале?

Решение Нам дано, что в кинозале 58 рядов и в каждом ряду 25 мест. Нам нужно найти количество человек, которое может разместиться в зале. Подытожим предоставленную нам информацию.

Количество рядов в кинозале = 58

Количество мест в каждом ряду = 25

Количество человек, которые могут разместиться в зале = ?

Количество человек, которые могут разместиться в зале, можно найти, умножив количество рядов на количество мест в каждом ряду. Это означает, что – 

Количество человек, которые могут разместиться в зале =  (Количество рядов в кинозале) x (Количество мест в каждом ряду) …………………… ( 1 )

Подставляя данное значения в приведенном выше уравнении, мы будем иметь,

Количество человек, которые могут быть размещены в зале = 58 x 25

Теперь

Отсюда количество человек, которое может разместиться в зале = 1450

Пример 2 Ресторан приобрел 81 коробку пакетов с кетчупом. В каждой коробке было 49 пакетов кетчупа. Сколько всего пакетов с кетчупом купил ресторан?

Решение Нам сообщили, что ресторан приобрел 81 коробку пакетов с кетчупом. В каждой коробке было 49 пакетов кетчупа. Нам нужно узнать, сколько всего пакетов кетчупа купил ресторан. Подытожим предоставленную нам информацию.

Количество коробок кетчупа, купленных рестораном = 81

Количество пачек кетчупа в каждой коробке = 49

Общее количество пачек кетчупа, купленных рестораном = ?

Чтобы найти значение количества упаковок кетчупа, купленных рестораном, нам нужно будет умножить количество упаковок кетчупа, купленных рестораном, на количество упаковок кетчупа в каждой коробке. Это означает, что

Общее количество упаковок кетчупа, купленных рестораном = (Количество упаковок кетчупа, купленных рестораном) x (Количество упаковок кетчупа в каждой коробке) ……………………………. ( 1 )

Подставив данные значения в приведенное выше уравнение, мы получим,

Общее количество пакетов кетчупа, купленных рестораном = 81 x 49

Теперь,

Следовательно, общее количество пакетов кетчупа, купленных рестораном ресторан = 3969.

Пример 3 Уильям купил 60 упаковок бумажных салфеток. В каждой упаковке было 56 салфеток. Сколько салфеток купил Уильям?

Решение Нам сообщили, что Уильям купил 60 упаковок бумажных салфеток. В каждой упаковке было 56 салфеток. Нам нужно найти количество салфеток, купленных Уильямом. Подытожим предоставленную нам информацию.

Количество упаковок бумажных салфеток, купленных Уильямом = 60

Количество салфеток в каждой упаковке = 56

Общее количество салфеток, купленных Уильямом = ?

Чтобы найти общее количество салфеток, купленных Вильямом, нам нужно будет умножить количество упаковок бумажных салфеток, купленных Вильямом, на количество салфеток в каждой упаковке. Это означает, что

Общее количество салфеток, купленных Вильямом = (Количество упаковок бумажных салфеток, купленных Вильямом) x (Количество салфеток в каждой упаковке) ………. ( 1 )

Подставив данные значения в приведенное выше уравнение, мы получим,

Общее количество тканей, купленных Уильямом = 60 x 56

Теперь,

Следовательно, общее количество тканей, купленных Уильямом = 3360

Основные факты и резюме
  1. Умножение определяется как процесс нахождения произведения двух или более чисел.
  2. Число, которое нужно умножить, называется множимым.
  3. Число, на которое мы умножаем, называется множителем.
  4. Результат, полученный после умножения множителя на множимое, называется произведением.
  5. Двузначные числа — это числа, состоящие из двух цифр, одной цифры в разряде десятков и одной цифры в разряде единиц.
  6. В методе расширенной записи мы расширяем множимое по разрядным значениям, а затем умножаем каждое число на множитель.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *